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Abstract - Chaotic sequences and chaotic dynamical systems are attractive candidates for use in
signal synthesis and analysis as well as in communications applications. In previous works, various
methods for the estimation of chaotic sequences under noise were developed. However, although the
methods were different, their qualitative performance was the same: for high SIVR the performance
was good, but below some threshold SNR, a sharp degradation in performance occurred. We
quantify this threshold effect and derive lower bounds on the value of the threshold SNR. Using
information-theoretic tools, we prove that for any ergodic chaotic system, there is a certain threshold
SNR level, below which the ratio between the mean square error obtained by any estimator of the
system’s initial state at the output of AWGN channel and the Bayesian Cramér-Rao bound increases
exponentially fast as the number of observations, IV, grows without bound. We derive lower bounds
on SN Ry, the value of the threshold SNR, as a function of the system’s Lyapunov exponent. Our
bounds have two versions, one for a finite number of observations, and one for the asymptotic regime
as N — oo. We explain the connection between the existence of threshold effect in the estimation
process of chaotic sequences and the converse to the joint source-channel coding theorem. We
demonstrate our results on the chaotic system governed by the r-diadic map.

Indez Terms - Chaotic systems, Kolmogorov-Sinai entropy, Lyapunov exponent, symbols of
dynamical systems, Bayesian Cramér-Rao bound, joint source-channel coding theorem, channel

capacity.
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1 Introduction

Chaotic discrete-time dynamical systems are used in various applications due to there ability to
generate highly complicated signals by a simple recursive procedure. Chaotic sequences are attrac-
tive candidates for use in signal analysis, signal synthesis, practical engineering and communications
applications. Chaotic systems are used as models for wide range of signal processing applications
(18] as well as for practical engineering systems like analog-to-digital converters [26] and power con-
verters [6]. Chaotic systems have the potential to give rise to good joint source-channel codes (3] due
to there ability to separate orbits of nearby initial states while maintaining global boundness, thus
conforming with energy and peak amplitude constraints. Chaotic signals are also used in spread
spectrum applications (8], where the power of the transmitted signal is spread across a broad range
of frequencies.

In most of the above applications, there is a frequent need to estimate the chaotic sequence from
noisy observations. Farmer and Sidorowich [10], based on the results of Hammel [11], proposed
to estimate the chaotic sequence as the sequence whose Euclidean distance to the noisy sequence
is minimum, under the constraint of obeying the dynamics of the chaotic system. As this ex-
tremum problem turned out to be rather difficult, they have reformulated the problem by using a
linearization of the chaotic system, which leads to the so-called manifold decomposition approach
for estimating chaotic sequences under noise. This approach is based on the observation that chaotic
systems work in two kinds of directions, stable and unstable, and it deals with errors along these
directions accordingly. Cuomo and Oppenheim [5] made use of the self-synchronization property of
some class of chaotic systems to recover chaotic sequences from noisy observations. The property of
self-synchronization [22] refers to the ability of some chaotic systems to synchronize independently.
Cuomo and Oppenheim focused on the Lorenz system and compared their self-synchronization ap-
proach to extended Kalman filtering. Cazelles and Boudjema (2], So, Ott and Dayawansa [29], and
Singer, Wornell and Oppenheim (28] proposed methods for recovering chaotic sequences from noise-
corrupted observations which are based on different techniques from control theory. Myers, Kay
and Richard (17 considered the maximum likelihood estimator of chaotic sequences. They reported
that, due to the chaotic nature of the sequences, the corresponding log-likelihood function is highly
irregular, containing multiple local maxima which are very narrow, and so their detection is difficult.
They also derived the parametric Cramér-Rao bound associated with the estimation of the initial
state of a multidimensional chaotic system. Papadopoulos and Wornell [20] derived the maximum
likelihood estimator of chaotic sequences generated by the so called “tent” map. They showed that
the maximum likelihood estimator is implementable as a certain extended Kalman filter, whose com-
putational complexity grows linearly with the number of observations . However, as shown by Chen
(3] later on, not only does not the maximum likelihood estimator achieve the Cramér-Rao bound,

but neither it is a consistent estimator for every value of the SNR. Kay and Nagesha [15] developed
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a dynamical programing (DP) algorithm for the realization of the maximum likelihood estimation
of chaotic sequences. This algorithm is similar to the Viterbi algorithm. However, the analytical
derivation of the DP algorithm is very hard due to the nonlinear nature of chaotic systems. In fact,
the maximum likelihood estimator of the tent map sequences is the only one that could have been
obtained analytically using Kay’s DP algorithm. Kay [14] investigated the asymptotic performance
of the maximum likelihood estimator of chaotic sequences. He showed, under some regulation con-
ditions, that when SNR — oo the estimation error is asymptotically normally distributed with
zero mean and variance given by the Cramér-Rao bound, i.e., the maximum likelihood estimator is
asymptotically unbiased and efficient. However, when SNR — 0, violating a necessary condition
(27], [30] for consistency of least squares (LS) estimator, the maximum likelihood estimator becomes
inconsistent.

Although the above mentioned approaches for estimation of chaotic sequences under noise are
different, their qualitative performance remains the same: good performance for high enough SNR
but sharp degradation in performance below a certain level of the SNR. In other words, in the
estimation process of the chaotic sequences, there is a threshold effect. In this paper, we prove the
existence of the threshold effect in the estimation of chaotic. We derive lower bound on the threshold
SNR as a function of the system’s Lyapunov exponent and the mutual information between the
chaotic sequence and the noisy observations. This bound is further simplified to a bound ‘which
depends on the system’s Lyapunov exponent and the power spectrum of the chaotic sequence. We
explain how the existence of the threshold effect actually derives from the converse to the joint
source-channel coding theorem. We obtain the bound on the threshold SINR by comparing the
Bayesian Cramér-Rao bound to a bound on the estimation error mean square error which is derived
using the data processing inequality. Although the data processing inequality does not yield a tight
bound (due to the suboptimality of the chaotic system for coding purposes), the interesting point
here is that it is still powerful enough to yield a better bound than the Cramér-Rao bound below
the threshold SNR.

The outline of the paper is as follows. In Section 2, we review the basics of dynamical systems,
focusing on issues that will be needed in the next sections. Readers that are familiar with these
basics may skip to Section 3 \;vhere we quantify the threshold effect for the asymptotic regime. In
Section 4, we derive a lower bound on the threshold SINR. In Section 5, we consider the threshold
effect in the case where the number of observations is finite. In Section 6, we demonstrate our results
on the chaotic system governed by the r-diadic map. Section 7 contains some concluding remarks

and directions for future research.



2 Preliminaries

In this section, we review basic terminology, properties and features of dynamical systems. The
review brought here is based on [1], [13], [16], [19], [23], [24]. Throughout this paper we denote
random variables with upper case letters and their realization with lower case letters. In general,
there are two kinds of dynamical systems: continuous-time dynamical systems and discrete-time
dynamical systems. The continuous-time systems are described by partial differential equations,
whereas the discrete time systems are described by difference equations. In our work, we focus on
discrete-time dynamical systems only. A discrete-time dynamical system is defined on a probability

space (X, A, ) and described by the following difference equation

z[0) =z € X
zn)=F(z[n-1]) n=1,23,... (1)

the transformation F' : X — X is the system’s map, X is the state space and z¢ is the system’s
initial state. The probability space (X, A, u) together with the system map F : X = X, constitutes
the dynamical system, denoted here by {(X,A4,u),F}. If we denote the n-th order composition
of the map F by F™ then z[n] = F™(z). The sequence of states OF(zo) = {F™(z0)}3, is an
orbit of the system. In this paper, we focus on the dynamical systems which are defined on the
Borel probability space, {([a,b],B,uB),F}. One class of such systems, which is interesting and
mathematically amenable, is the class of systems which are governed by the eventually ezpanding
piecewise linear Markov maps. A map is eventually expanding, piecewise linear Markov map if the

following conditions are satisfied:

e There exists a set of points, called the partition points, a = ag < a3 < ... < ar = b, such that

in each interval A; = [a;—1, ;) the map F is affine.

e Partition points are mapped to partition points, i.e., for all a;, 1 =0,1,...,L, F(a;) = a; for
some j =0,1,...,L.

dF™(z)
iz —l > 1.

e The map is eventually expanding map,i.e., 3n € N, infze(q,p)
An example of such system is the one governed by the r-diadic map, {([0, 1), B, uB), Fr},

F.(z) = (rz)mod1 (2)

where r is an integer greater than one.

A. Invariant Density

When the system’s initial state is a random variable the sequence of states is a stochastic process,
whose stochastic properties are derived exclusively from the distribution of initial state. The follow-

ing questions naturally arise: What is the probability law of this stochastic process? Is it stationary?



Is it ergodic? The answers to these questions are based on understanding how does the density func-
tion of the state X[n] evolve as the system iterates, i.e., given the density function of X[n — 1],
denoted here by fn—1(z), what is the density function of X[n], fn(z)? The density function f,(z)
is obtained recursively as a functional of f,—1(z) by using the Frobenius-Perron (FP) operator [16].

The FP operator associated with the system {([a, 8], B, ug), F'} is given by

FPf(z)= d(i /F_ f(@)de, =z €]a,b] (3)
Y(la,=])
where f € L1(a,b). If the system {([a, b], B, u8), F} initial state z¢ is a random variable with density
fo then it can be shown [16] that
fn(z) = FP fr_(z) (4)

The stochastic process { X [n]} is, in general, not stationary. A density fo forwhich fo = fi = fo = ...
is called an invariant density. In other words, the invariant density is a fixed point of the Frobenius-

Perron operator
FPf=f. (5)

A fixed point does not necessarily exist and if exists, may not be unique (the conditions required
for the existence and uniqueness of a fixed point are given by the fized point theorem). When fo
is an invariant density, it is straightforward to show that the stochastic process generated by the
dynamical system is wide sense stationary. Furthermore, if the invariant density is unique, it is also
ergodic [16] i.e., time averages equal ensemble averages with probability one. The map F is then
called ergodic. For example, in the case of the r-diadic map, the uniform density is easily shown
to be invariant. This density is unique [16] and therefore the stochastic process generated by the
system is wide sense stationary ergodic process. From now on, throughout this paper, we consider

the dynamical system {([a,b], B,us), F'} where F is ergodic, f is the invariant density and
w42 [ f@as acs. (6)
A

B. Kolmogorov-Sinai Entropy

The Kolmogorov-Sinai (KS) entropy is the greatest average amount of information that the dy-
namical system produces about its initial state per iteration and therefore the additional minimum
amount of information, required on the average, in each iteration to maintain an arbitrarily fine
localization of the initial state. Consider a partition £ = {Ax}X5! of [a,b). The entropy of the

partition £ is given by
K-1

Hy (6) 2 = > py(Ax)Inps(A). (7)

k=0
When no iterations of F on the system initial state zo are considered, we need, on the average,

H,,(€) nats in order to determine in which set A the initial state Xo is. When IV — 1 iterations



are considered

N-1
H,, ( V F'"<e)> 8)
n=0

nats are needed to determine which set of

N-1 K-1
V F© 2 (A NF 4 YD)} (©)
o K2k =
where
F-(4) & {z € [a, b][F"(z) € A} , (10)
includes Xg. The KS entropy, Hy, (F), is given [13] by i
Hy, (F) = sup  Hy,(F,¢) (11)
EiHu; (§)<oo
where
1 N-1
Hy, (F€) = Jim = H,, (XO F'"(f)) (12)

where the limit always exists [13]. A partition £ achieving the supremum is called a generating

partition. For example, in the case of the r-diadic map the partition
i-1 i\
B {[ F ’;) }i=1 (13)

H,,(F)=Inr nats. (14)

is a generating partition [13] and

C. Chaotic Systems

Chaotic dynamical systems are characterized by high sensitivity to the initial state. In chaotic
systems, the orbits O; (zo) and O; (zo+¢) originating from nearby initial states, z¢ and o+€, € <<
1, respectively, diverge exponentially fast as N grows large. Chaotic systems exhibit high local
instability while maintaining global boundness. A commonly used definition of chaotic system is
that based on the statistical quantities called the Lyapunov ezponents [19]. The Lyapunov ezponent,
X(z), associated with the dynamical system {([a,b], B, us), F'} is defined as

s . 1. |dFN=1(z)
/\(23) - ng)noo ﬁ In %

,  T€[ab] (15)

provided that the limit exists. In general, A(z) depends on z. However, when F' is ergodic, Oseledec’s

Theorem [19] tells us that

Az)= A2 Eln \F(X)| a.e. (16)
F(z) 2 d’%’”). (17)

where the expectation is with respect to the invariant density f, and is assumed to exist. If A > 0,
the system is chaotic, otherwise the orbits eventually converge to a fixed point or behave periodically.

For example, in the case of the r-diadic map we have

A=FEln

F,(X)’ =Inr. (18)
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The r-diadic map is defined for 7 > 1, so A > 0, and therefore the system is chaotic.

D. Symbols of Dynamical Systems

Orbits of dynamical systems can be represented by using the so called symbols of the system, denoted
here by {S[n]}¥=;'. A symbol S[n] € S = {so,...,sk—1} indicates to which subset of the generating

partition = {Ao,..., Ax—1}, the state X[n] belongs, i.e.,
Sn]=sx if X[n]€Ar k=0,1,...,K -1 (19)

In the case of a non-invertible map F, knowing X[n] and S[n — 1] € S is sufficient to determine

X[n — 1] and then it can be written that
X[n - 1] = ¢(S[n - 1], X[n]). (20)

where the map ¢ is referred to as the inverse of F' given symbol. Using (20), an orbit of a dynamical

system, {X[n]}=!, can be represented in the symbol-based form, ({S[n]}¥=Z, X [N —1]). Sometimes

n=0"
there is an advantage in using the symbol-based representation like in [20] where it was used to derive

the maximum likelihood estimator of the chaotic “tent” map sequences. The symbols {S[n] f;‘ol

are identically distributed, discrete-valued random variables with the probability law

P,(S[n] = s¢) =/ f@)ds, k=0,.. K-1. (21)
A
For example, in the case of the r-diadic map we have that
k-1 k
Snh)=k if X[TL]E[T—,;> k=0,1,...,7r-1 (22)
1 1
é(s,z) = = + =5 (23)
N-2 1
- N —(i—n+ -
X[n]= > St 4 Non XN =1, n=01,...,N~1 (24)

and the symbols are uniformly distributed across § = {0, 1,...,7 — 1}.

For chaotic systems, we can expect that as IV increases, the subsets visited during the system
evolution become more and more different for different initial states and in the limit as N — oo,
they determine exclusively the initial state X [0]. This intuition is true. There is a one-to-one map
a.e. between the initial state X[0] and the infinite sequence of symbols {S[n]}32, [13]. For example,
in the case of the r-diadic map (assigning n = 0 and taking N — oo in (24)) the infinite sequence
of symbols is the infinite-length radix-r representation of X[0], which is known to constitutes one-
to-one map a.e.

The symbols {S [n]}N — completely determine the subset to which the initial state belongs,

n=0

therefore H,,, (\/” » F-n(g)) = H ({S[n)}N=2). Thus

n=0

H,,(F)= Jim H ({SR}IS) = H(S). (25)



where H(S) is the entropy rate of S[n]. Combining (25) with the Pesin relation for chaotic systems
(24], stating that H,, (F) < A, we have the relation

H(S) = H,,(F) < \. (26)

3 The Threshold Effect

In this section, we prove the existence of a threshold effect in the estimation of chaotic sequences as
the number of observations grows without bound. Using the data processing theorem, we derive a
lower bound on the mean square error obtained by any estimator of the initial state. We compare
that bound with the Bayesian Cramér-Rao bound and show that below certain SIVR level, the
Bayesian Cramér-Rao bound is not tight, thus the existence of the threshold effect is proved.

We consider the problem of estimating the initial state of the chaotic system {([a, 8], B, nf), F'}

given the noisy observations Y'[0],...,Y [NV - 1],
Y[l = X[n] + Win] n=01,,...,N~1, (27)

where {X[n]}Y=! is the chaotic sequence and {W[n]}N=' is zero-mean white Gaussian noise with
variance o?. Let X = [X[0]...X[N = 1]]T,Y = [Y[0]...Y[N = 1]]T. The average power of
{X[”]}n—o is

N-1
1
= ¥ & B = B(x3) (28)
n=
and the channel SNR is then
P  EB{X%

The Bayesian Cramér-Rao bound, associated with the estimation of the initial state of the dynamical

system {([a, ], B, us), F}, is given by

N-1 -1
CRB = | E(p(X)) + }1— S E (F" X)) ] , (30)
n=0
where
()isz(), neN (31)
2
olz) & (dl“dﬁ(f”)) , (32)

and the expectation is with respect to the invariant density f. This bound can readily be derived

by extending the previously obtained parametric Cramér-Rao bound [17] into the Bayesian case.

Theorem 3.1. Let {([e,b], B, pz), F'} be a dynamical system with an ergodic mapping F, let f be the

tnvariant density assumed to satisfy f > € > 0 a.e., and let X be the system’s Lyapunov erponent.



Let CRB denote the Bayesian Cramér-Rao bound associated with the estimation of initial state.

Then,
lim inf ; InCRB < -2A. (33)

N—=o00

The proof appears in Appendix A.

We now use the data processing theorem to derive a lower bound on the mean square error ob-

tained by any estimator of the initial state.

Theorem 3.2. For a given dynamical system {([a,b], B, us), F}, and an arbitrary estimator X[0]

of the initial state, let

D £ B{(X[0] - X[0])*}. (34)

Under the assumptions of Theorem 3.1, we have

R | -
l}&lgof N InD > -2I(X;Y) (35)
where
T(X;Y) 2 limsup L&) (36)
N-oc0 N

and I(X;Y) is the mutual information between X and Y.

Proof. The random variables (X[0], X, Y, X[0]) constitute a Markov chain
X[0] = X =Y — X[0]. (37)
Therefore, according to the data processing theorem [4] we have
R(D) < I(X[0}; X[0)) < L(X:¥), (38)

where R(D) is the rate-distortion function of a random variable distributed according to f. Using

Shannon’s lower bound [4], we have

RD) > L (&2
( )_En(2W€D> (39)

where h(X) is the differential entropy induced by f. Incorporating (39) into (38,) we have

x> 2w (€
>3 (een ) (40)
Dividing both sides of by N and taking N — oo, we have

i s g -

liminf =In D > -21(X;Y), (41)

which is the desired result W.



Lemma 3.3. For a given channel input distribution, the mutual information I(X;Y) is a strictly

increasing function of the SNR.

Proof. Follows immediately from the data processing theorem [4] W.

Motivated by Lemma 3.3, we now introduce the notation:
I(SNR,N) £ I(X;Y), I(SNR)£I(X;Y). (42)

As I(SNR) is a strictly increasing function of the SNR, it has an inverse function, denoted here as

I71(.), which is also an increasing function.

Corollary 3.4. Under the assumptions of Theorem 3.1,

lim inf-]-tr-ln ( afm) >92() - I(SNR)). (43)

N-00

Proof. Combining (35) and (33) immediately yields the desired result B.

Corollary 3.5. Under the assumptions of Theorem 3.1, we have that for
SNR< I"Y(A) £SNR* (44)

no estimator of the initial state can be asymptotically efficient. Moreover,

D

lim ———= = 0. (45)

Proof. Follows directly from Corollary 3.4 H.
If an estimator of the initial state asymptotically achieves the Bayesian Cramér-Rao bound it may

do so only beyond a threshold SN R, denoted here by SN R:n, which is lower bounded by
SNRu, > SNR". (46)
Since the system is chaotic (A > 0) then:
SNR*=1"'(\)>I7'(0)=0, (47)

ensuring that the bound on the threshold SN R is nontrivial. The above analysis explains why there
will always be a threshold effect: below some threshold SINR, a sharp degradation in performance,
of exponential order, as Corollary 3.4 indicates, will occur. Corollary 3.5 provides us with a lower
bound on the threshold SNR. We now show how the existence of the threshold effect is actually
tied to the converse to the joint source-channel coding theorem [4]. As mentioned above, sharp

degradation, of exponential order, in performance starts when
I(SNR) < A. (48)
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Suppose that (26) is met with equality, we then deduce that whenever
I(SNR) < H(S), (49)

degradation in the performance (in comparison with the lowest possible distortion, the Cramér-Rao
bound) of every estimator occurs. According to the converse to the joint source-channel coding
theorem, a finite alphabet stationary source V[n] with entropy rate H(V') cannot be sent through a
channel whose capacity is C, with arbitrary low probability of error if C < H(V). There is a one-to-
one map between the initial state X [0} and the infinite sequence of symbols {S[n]}32, a.e., therefore,
as N — co, we can consider the problem of chaotic sequence estimation as a joint source-channel
coding scheme with stationary source S[n] having entropy rate of H(S), a joint source-channel coder
which is the chaotic system and channel with capacity I(SNNR). This scheme is drawn in Fig. 1.
Note that the maximum number of nats that the channel can convey with arbitrary low probability
of error is I(SNR), not the channel capacity C, since the density of X is predetermined according
to the invariant density and the map F', and does not achieve the capacity. When (26) is not met
with equality, degradation in performance occurs already in SNR* = I~1()) which is larger than

I=1 (H(S)). This is because the chaotic system is not an optimal joint source-channel coder.

Joint x[n] y[n] 5
s[n]—» Source\Channel » Channel > Decoder —» s [n]
Coder

Chaotic System

Figure 1. The estimation scheme of chaotic sequences as a joint source-channel coding scheme.

4 Lower Bound on the Threshold SNR

The bound on the threshold SNR is a function of the mutual information between the chaotic
sequence and the noisy observations. However, due to the nonlinearity of the map F, calculating
this mutual information is very difficult. Therefore, we derive an upper bound on the mutual

information and use it to obtain a lower bound on the threshold SNR. If
I(SNR) < Ig(SNR) VSNReR* (50)
where Ig(SNR) is some increasing function of SN R then
SNRu, > Ig'(\) £ SNR}, (51)

11



where I5! is the inverse function of Ip. However, the above bound is less tight than the one in (46).

The mutual information I (X;Y) is given by

In(27ea?). (52)

The last equality is due to the fact that the channel noise W is white Gaussiard noise, independent

of X. Let us denote the zero mean random vector z as

Y=Y-EY=Y-EX (53)

h(Y) = h(Y) (54)
N-1

=3 n(¥1 n]l{Y[z]}ro (55)
n=0

= Iilh’ (i;[ ] gn ({Y 1—0) I{Y[’L 1,—0) (56)
n=0

<3 4 (Tl on (WD) -
NZ (2meE (¥l - gn (F111)) ) (58)

where in (55) we made use of the entropy chain rule, (56) holds for arbitrary functions g,(-), (57)

IA

1
-2

follows from the fact that conditioning reduces entropy, and (58) follows from the fact that the
Gaussian density maximizes the differential entropy for a given second moment. To obtain the
tightest bound, we select gn(-) to be the optimal linear predictor of Y[n] given {Y[i]}2 . Let us
denote the mean square error obtained by the optimal linear predictor by o2, which depends on the

autocorrelation function of ¥[n}, Rgplk]. Let

X[n] £ X[n] - B{Xo}, (59)
then,
Ryylk] = o%0k] + Rgz[k], Rzzlk] = Rxx[k] - (E{Xo}), (60)
b
RxxlK = BXnF(X[D) = [ 2F*(@)1()dz. (61)
Substituting o2 into (58), we obtain
1 N-1
h(Y) < =) In(2ned?), (62)
2 n=0



which in turn yields (by (52))

1 /02
IXY)<5 ) I (;%) : (63)
n=0
Dividing (63) by N and taking N — co, we have that
_ Xy 1., 132 /o2
aid) o1 1 On
imoup S5 < & S (2 ©9)

Invoking Césaro’s theorem [25], we have that
N-1
1 o2\ . o2 -
Am 2t (%) - jm (2 (65)

Since the process ¥ [n] is stationary and ergodic, then according to the Kolmogorov formula [25], we

have
1 s
. 2
nlgr;o o, = exp {% /_7r In Sl-,;,(w)dw} . (66)
Usinig (60), the power spectrum of f’[n] is given by
Syp(w) = ol + Sgzw). (67)

Substituting {67) into (66) and then the result into (65), we obtain

N-1
.1 o2\ 1 [T Szz(w)
Substituting (68) into (64) we have
: IX;Y) 1 /" S}?)? (w)
Sid) o 1 Ogxw) .
h]{[njllop S /_7r In <1+ o dw | (69)
Let
"N _1_/" < Sig(w)SNR
IL(SNR) = o -ﬂln 1+—_—E{X§} dw. (70)

Note that (70) is the capacity of the Gaussian channel where the channel input is forced to have a
given power spectrum S z(w). The channel capacity is then achieved with a Gaussian input having

this power spectrum. Using (51), a lower bound on the threshold SN R, is the value of the SNR

T S5 (w)SNR
’\=Z17? In (1+%%zg}—> dw. (71)

Isabelle and Wornell [12] used the matrix representation of the Frobenius-Perron operator [9] to

satisfying

—_T

obtain an expression for the autocorrelation function and power spectrum corresponding to the
eventually expanding piecewise linear Markov maps. Using their results, (71) and (75) could be

obtained for this class of maps.
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5 The Threshold Effect - Finite N

In this section, we consider the case where the number of observations is finite. Rearranging (40),
we have

D> s exp {~2I(SNR,N) ~ h(X))}, (72)

Comparing the above bound on D to the Cramér-Rao bound bound D > CRB £ CRB(SNR,N),
a lower bound on the threshold SN R, is the highest value of the SN R satisfying

1 e2h.(X) A
I(SNR,N) = 5 1n ( TeCREENE N)) 2 R(SNR,N).- (73)

If the mutual information I{(SN R, N) is upper bounded by a increasing function of SNR, Ig(SNR, N),
the threshold SN R is also lower bounded by the highest value of the SN R satisfying

o L (2h(X) :
Ig(SNR,N) = :In (27reCRB(SNR N )) ™

Using the upper bound we obtained on the mutual information (63), a lower bound on the threshold

SNR, is the highest value of the SN R satisfying

SNR,N) = +1 il
IL(SNR )= 3ln <27reC’RB(SNR, N)) %)
where  Ne1
o2SNR
IL(SNR,N) ZI (E{X2}> (76)

Next we demonstrate our results on the dynamlcal system governed by the r-diadic map.

6 Results For The r-diadic Map

The r-diadic map is eventually expanding piecewise linear Markov map. However, it is easier to
calculate the autocorrelation function directly, as we do next. It is easy to verify that for every

nonnegative integer k,

1 i ‘
F¥(z) = (rFz)modl = rFz — i + 1, me[zrk ,;%), i=1,2,...,r% (77)

Using (77), the autocorrelation function is given by

Rxx[k] = /0 1 cF* (z)dz

pikl g it1

s
= Z /_“= z(rlFz — i)dg
=0 ,.I—lkl'
rl¥loy .
_ 1 Z 3i+2
T 20kl o 6
Ikl
=—+7 (78)
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For the r-diadic map we have
dF™z)

f=1 o =T ae (79)
Using the above we have ,
r“—1
h(X)=0. (81)

Substituting (80) into (75), a lower bound on the threshold SN R for finite N, is the highest value
of the SN R satisfying .

1 3(r*N —1)SNR -
Now we deal with the asymptotic result. Substituting (78) into (60) we have
T‘IH 2
Ry (k] = 3t 0[], keZ (83)
and
Ry5(2) = Z{Rp3[k]} = L L=r " +0° (84)
Yy\es = YY T 121 —r-1271)(1 - rol2)
After some algebraic manipulation, (84) is rewritten in the canonical form [25] :
Ryg(2) = aiB(2)B(z ™), (85)
where the minimum phase filter B(z) is given by
] = ﬂ—lz—l
Bl =1 (86)
with
— a2 oy _ ale?r) +y/a2(o?,r) ~ 576r—2g4
ﬂ - /B(U 7”‘) - 247,_10_2 (87)
and
a(e®,r) £1-r"2 +120%(1 +r7?) (88)
and the variance of the innovation process is
2 .3 .2
g2 = BloLno” (89)
T
According to Kolmogorov’s theorem [25], we have
L [Ms dw =Ino?
Ty InSyp(w)dw =Inoy. (90)
Substituting (90) and E{X3} = 1/3 into (70), we obtain
1 SNE
IL(SNR)=31n (5(—35—;&—@) . (91)

15



Substituting (91) and A = Inr into (71), a lower bound on the threshold SNR is the value of the
SN R that solves the equation
3 =4 (-?-,—S,jv—R,r> . (92)

In [12], it was shown that the spectra associated with the eventually expanding piecewise linear
Markov maps are rational (thus the processes generated by those maps are referred to as chaotic
ARMA processes). Therefore, for this class of chaotic maps, the representation of the spectrum in
the canonical form, in order to obtain the innovation process variance, is relatively easy.

In Fig. 2, I.(SNR) (91), for r = 2, together with the AWGN channel «capacity, Cawagny =
0.51n(1 + SNR), are drawn. It is clearly seen that there is considerable difference between the
two. We obtained for N — oo that SNRy, > 11.84dB. In Fig. 3, I1(SNR,N) and R(SNR,N)
(82) are drawn for N = 8 and r = 2. Here we obtained that SNR,, > 11.5dB. The values of
the lower bound on the threshold SNR for N = 5,6,7,8 are summarized in Table 1. In [7] the
optimal (MMSE) estimator of the initial state for the 2-diadic map was obtained. We performed
Monte-Carlo simulations to obtain the mean square error of the MMSE estimator of the initial state
as function of the SNR. The result for N = 8 is drawn in Fig. 4. The form of representation is
MSE~! and CRB~! in dB. It is seen that the Bayesian Cramér-Rao bound is achieved beyond
some threshold SNR, SN Ry, = 20dB (up to the SN R resolution we used in the simulation, 0.5dB).
The bound we obtained is therefore not tight enough.

There are three possible reasons for the fact that the bound on the threshold SN R is not tight:
the first reason is that the bound we used on the mutual information 7(X;Y') is not tight, the second
reason is that the data processing inequality is not tight, and last reason is that Shannon’s lower
bound on the rate- distortion function is not tight. We have carefully examined the above three
factors and reached the conclusion that the main reason for the bound on the threshold SNR not

being tight is that the data processing inequality is not tight.

7 Concluding Remarks

In this paper, we quantified the threshold effect that exists in the estimation process of chaotic
sequences. We derived a lower bound on the threshold SN R, showing it depends on the system’s
Lyapunov exponent and the muﬂual information between the chaotic sequence and the noisy observa-
tions. This bound was further simplified to a bound depending on the system’s Lyapunov exponent
and the power spectrum of the chaotic sequence. For the wide and important class of eventually
expanding piecewise linear Markov maps this bound can be easily calculated. We explained our
results using the converse to the joint-source channel coding theorem. Essentially, for SNR’s below
the threshold, the amount of information that the chaotic system produces about its initial state

is larger than the maximum information that the channel can convey with low probability of error.
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Thus, degradation in distortion performance is unavoidable. Although the bound on the estimation
error mean square error which derives from the data processing inequality is not tight, it is tighter
than the Bayesian Cramér-Rao bound below the threshold SINR. An interesting future research
direction would be to consider the data processing theorem suggested by Ziv and Zakai [31], which

for a finite number N of channel uses, provides better bounds on distortion than the classical data

processing theorem.

N 5 6 7 8 00 -
SNRy, > | 11.3dB | 11.4dB | 11.4dB | 11.5dB | 11.8dB

Table 1: Lower bound on the threshold SN R for » = 2, finite valued N’s and N — oo.
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Figure 2: The asymptotic mutual information upper bound, I,(SNR), for r = 2.
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A Proof of Theorem 3.1

We first prove the following lemma:

Lemma A.l. Let {([a,b],B,,uf),F} be a dynamical system. Under the as

3.1, we have that for all N € N the function

1. |dFN(z)
ﬁlnl dr

is bounded almost everywhere.

Proof. According to Oseledec’s theorem [19],

b
Em\F(X){ =/ feytn | H @ 4z = ) < oo,
- dz
Thus, the above integrand is bounded almost everywhere,
dF(z)
—— 1 L €
If(x)l‘lnl e < B a.e
Since f > & > 0 a.e. we have,
‘ ‘dF(x) B
In < = a.e.
dz €
yielding that
m < ldF(z) <M ae
dz

where 0 < m < M. Using the derivative chain rule, we have

N

dFN(z dF(t
()=H (t)

dz dt L:Fu—l(z)'

n=1

Using (98) and (97), we have that

N
mNSI-(E——(z—) <MV ae
dz -

and that N

1 dF™(z)

o Iy | it || 2

\Nln‘ o < max{|lnm|,|In M|}, a.e.
forall Ne N R

We now prove Theorem 3.1.

Using we (30) have

ks = E(e(X)) + j—zNg B (X))
> B%E (F”—l()c))2
> 5 (B|F* o))

20
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(93)

(98)

(101)




where the in last line, we used Jensen’s inequality and the convexity of the function g(u) = u?.

Taking the logarithm and dividing by IV, we get:

b (k) » i (ol
el + 3o (3

2 Hin | #8106 + N—ln ((}2) , (102)

v

N

where in the last line we used again Jensen’s inequality. Taking N — oo at both sides of (102), we

obtain

1 L N-1(
— ) > J
lim inf — (CRB) 2 lim E— ln‘F Y)‘

N—oo N N—oo
: 1 aF" (@) |
=2 Jim_ / = - (103)
Using Oseledec’s Theorem {19], we have
1. |dFN=1(z)
1\}1—51100 —ﬁln ——d_l‘_—— = X a.e, (104)

and from Lemma A.1, we have for all N € N, that the expression in the above limit is bounded

almost everywhere. Therefore, according to the Lebesgue dominated convergence theorem [16], we

have
) b 1 dFN 1 1 FN—l( )
A}gnm /a f (z) / f(z hm — ln = dz
=/ flz)Adz = A (105)
Substituting (105) into (103,) we obtain that
li f— 1 L > 22, 106
v\ CrE (106)

which completes the proof.
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