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Abstmct - Chaotic sequences and chaotic dynamical systems are attractive candidates for use in 

signal synthesis and analysis as well as in communications applications. In previous works, various 

methods for the estimation of chaotic sequences under noise were developed. However, although the 

methods were different, their qualitative performance was the same: for high SN R the performance 

was good, but below some threshold SN R, a sharp degradation in performance occurred. We 

quantify this threshold effect and derive lower bounds on the value of the threshold SNR. Using 

information-theoretic tools, we prove that for any ergodic chaotic system, there is a certain threshold 

SN R level, below which the ratio between the mean square error obtained by any estimator of the 

system's initial state at the output of AWGN channel and the Bayesian Cramer-Rao bound increases 

exponentially fast as the number of observations, N, grows without bound. We derive lower bounds 

on SN Rth , the value of the threshold SN R, as a function of the system's Lyapunov exponent. Our 

bounds have two versions, one for a finite number of observations, and one for the asymptotic regime 

as N � oo. We explain the connection between the existence of threshold effect in the estimation 

process of chaotic sequences and the converse to the joint source-channel coding theorem. We 

demonstrate our results on the chaotic system governed by the r-diadic map. 

Index Terms - Chaotic systems, Kolmogorov-Sinai entropy, Lyapunov exponent, symbols of 

dynamical systems, Bayesian Cramer-Rao bound, joint source-channel coding theorem, channel 

capacity. 

*This paper stirnrnarizes part of the M.Sc. thesis of the first author. 
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1 Introduction 

Chaotic discrete-time dynamical systems are used in various applications due to there ability to 

generate highly complicated signals by a simple recursive procedure. Chaotic sequences are attrac­

tive candidates for use in signal analysis, signal synthesis, practical engineering and communications 

applications. Chaotic systems are used as models for wide range of signal processing applications 

(18] as well as for practical engineering systems like analog-to-digital converters (26] and power con­

verters (6]. Chaotic systems have the potential to give rise to good joint source-channel codes (3] due 

to there ability to separate orbits of nearby initial states while maintaining global boundness, thus 

conforming with energy and peak amplitude constraints. Chaotic signals are also used in spread 

spectrum applications (8], where the power of the transmitted signal is spread across a broad range 

of frequencies. 

In most of the above applications, there is a frequent need to estimate the chaotic sequence from 

noisy observations. Farmer and Sidorowich (10], based on the results of Hammel (11], proposed 

to estimate the chaotic sequence as the sequence whose Euclidean distance to the noisy sequence 

is minimum, under the constraint of obeying the dynamics of the chaotic system. As this ex­

tremum problem turned out to be rather difficult, they have reformulated the problem by using a 

linearization of the chaotic system, which leads to the so-called manifold decomposition approach 

for estimating chaotic sequences under noise. This approach is based on the observation that chaotic 

systems work in two kinds of directions, stable and unstable, and it deals with errors along these 

directions accordingly. Cuomo and Oppenheim (5] made use of the self-synchronization property of 

some class of chaotic systems to recover chaotic sequences from noisy observations. The property of 

self-synchronization (22] refers to the ability of some chaotic systems to synchronize independently. 

Cuomo and Oppenheim focused on the Lorenz system and compared their self-synchronization ap­

proach to extended Kalman filtering. Cazelles and Boudjema (2], So, Ott and Dayawansa (29], and 

Singer, Wornell and Oppenheim (28) proposed methods for recovering chaotic sequences from noise­

corrupted observations which are based on different techniques from control theory. Myers, Kay 

and Richard (17] considered the maximum likelihood estimator of chaotic sequences. They reported 

that, due to the chaotic nature of the sequences, the corresponding log-likelihood function is highly 

irregular, containing multiple local maxima which are very narrow, and so their detection is difficult. 

They also derived the parametric Cramer-Rao bound associated with the estimation of the initial 

state of a multidimensional chaotic system. Papadopoulos and Warnell (20] derived the maximum 

likelihood estimator of chaotic sequences generated by the so called "tent" map. They showed that 

the maximum likelihood estimator is implementable as a certain extended Kalman filter, whose com­

putational complexity grows linearly with the number of observations . However, as shown by Chen 

(3] later on, not only does not the maximum likelihood estimator achieve the Cramer-Rao bound, 

but neither it is a consistent estimator for every value of the SNR. Kay and Nagesha (15] developed 
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a dynamical programing (DP) algorithm for the realization of the maximum likelihood estimation 

of chaotic sequences. This algorithm is similar to the Viterbi algorithm. However, the analytical 

derivation of the DP algorithm is very hard due to the nonlinear nature of chaotic systems. In fact, 

the maximum likelihood estimator of the tent map sequences is the only one that could have been 

obtained analytically using Kay's DP algorithm. Kay [14] investigated the asymptotic performance 

of the maximum likelihood estimator of chaotic sequences. He showed, under some regulation con­

ditions, that when SN R -+ oo the estimation error is asymptotically normally distributed with 

zero mean and variance given by the Cramer-Rao bound, i.e., the maximum likelihood estimator is 

asymptotically unbiased and efficient. However, when SN R -+ 0, violating a necessary condition 

(27), (30] for consistency of least squares (LS) estimator, the maximum likelihood estimator becomes 

inconsistent. 

Although the above mentioned approaches for estimation of chaotic sequences under noise are 

different, their qualitative performance remains the same: good performance for high enough SN R

but sharp degradation in performance below a certain level of the SNR. In other words, in the 

estimation process of the chaotic sequences, there is a threshold effect. In this paper, we prove the 

existence of the threshold effect in the estimation of chaotic. We derive lower bound on the threshold 

SN R as a function of the system's Lyapunov exponent and the mutual information between the 

chaotic sequence and the noisy observations. This bound is further simplified to a bound 'which 

depends on the system's Lyapunov exponent and the power spectrum of the chaotic sequence. We 

explain how the existence of the threshold effect actually derives from the converse to the joint 

source-channel coding theorem. We obtain the bound on the threshold SNR by comparing the 

Bayesian Cramer-Rao bound to a bound on the estimation error mean square error which is derived 

using the data processing inequality. Although the data processing inequality does not yield a tight 

bound (due to the suboptimality of the chaotic system for coding purposes), the interesting point 

here is that it is still powerful enough to yield a better bound than the Cramer-Rao bound below 

the threshold SNR.

The outline of-the paper is as follows. In Section 2, we review the basics of dynamical systems, 

focusing on issues that will be needed in the next sections. Readers that are familiar with these 
. 

. 

basics may skip to Section 3 where we quantify the threshold effect for the asymptotic regime. In 

Section 4, we derive a lower bound on the threshold SNR. In Section 5, we consider the threshold 

effect in the case where the number of observations is finite. In Section 6, we demonstrate our results 

on the chaotic system governed by the r-diadic map. Section 7 contains some concluding remarks 

a;nd directions for future research. 
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2 Preliminaries 

In this section, we review basic terminology, properties and features of dynamical systems. The 

review brought here is ba.sed on (1), (13), [16), [19), [23), [24). Throughout this paper we denote 

random variables with upper case letters and their realization with lower ca.se letters. In general, 

there are two kinds of dynamical systems: continuous-time dynamical systems and discrete-time 

dynamical systems. The continuous-time systems are described by partial differential equations, 

whereas the discrete time systems are described by difference equations. In our work, we focus on 

discrete-time dynamical systems only. A discrete-time dynamical system is defined on a probability 

space (X, A,µ) and described by the following difference equation 

x[O] = xo EX 

x[n] = F(x[n - 1)) n = 1,2,3, ... (1) 

the transformation F : X -+ X is the system's map, X is the state space and x0 is the system's 

initial state. The probability space (X, A,µ) together with the system map F :  X-+ X, constitutes 

the dynamical system, denoted here by { ( X, A,µ), F}. If we denote the n-th order composition 

of the map F by pn then x[n] = pn(xo). The sequence of states Ot(xo) � {Fn (x0)}�=o is an 

orbit of the system. In this paper, we focus on the dynamical systems which are defined on the 

Borel probability space, {([a,b],B,µB),F}. One class of such systems, which is interesting and 

mathematically amenable, is the class of systems which are governed by the eventually expanding 

piecewise linear Markov maps. A map is eventually expanding, piecewise linear Markov map if the 

following conditions are satisfied: 

• There exists a set of points, called the partition points, a = a0 < a1 < ... < aL = b, such that

in each interval �i = [a:;-1, a:;) the map F is affine. 

• Partition points are mapped to partition points, i.e., for all a;, i = 0, 1, . .. , L, F(a;) = O:j for

some j = 0, 1, .. . , L. 

• The map is eventually expanding map,i.e., 3n E N, inf
:i:
E[a,b] I dF;}:i:) I > 1.

An example of such system is the one governed by the r-diadic map, { ((0, 1), B, µB), Fr}, 

where r is an integer greater than one. 

A. Invariant Density

Fr(x) = (rx)modl (2) 

When the system's initial state is a random variable the sequence of states is a stochastic process, 

whose stochastic properties are derived exclusively from the distribution of initial state. The follow­

ing questions naturally arise: What is the probability law of this stochastic process? Is it stationary? 
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Is it ergodic? The answers to these questions are based on understanding how does the density func­

tion of the state X[n] evolve as the system iterates, i.e., given the density function of X[n - 1], 

denoted here by Jn-1(x), what is the density function of X[n], Jn(x)? The density function Jn(x) 

is obtained recursively as a functional of Jn-dx) by using the Frobenius-Perron (FP) operator [16). 

The FP operator associated with the system {([a,b],B,µB),F} is given by 

F PJ(x) =
d
d 

r. J(a)da, XE [a,b] 
X } p-1 ((a,:i:]) 

(3) 

where J E L1 (a, b). If the system { ([a, bl, B, µB), F} initial state xo is a random V1!riable with density 

Jo then it can be shown [16] that 

Jn(x) = FPJn-1(x) (4) 

The stochastic process {X[n]} is, in general, not stationary. A density Jo for which /0 = Ji = h = . . .  

is called an invariant density. In other words, the invariant density is a fixed point of the Frobenius­

Perron operator 

FPJ = f. (5) 

A fixed point does not necessarily exist and if exists, may not be unique (the conditions required 

for the existence and uniqueness of a fixed point are given by the fixed point theorem). When /0 

is an invariant density, it is straightforward to show that the stochastic process generated by the 

dynamical system is wide sense stationary. Furthermore, if the invariant density is unique, it is also 

ergodic (16) i.e., time averages equal ensemble averages with probability one. The map F is then 

called ergodic. For example, in the case of the r-diadic map, the uniform density is easily shown 

to be invariant. This density is unique [16) and therefore the stochastic process generated by the 

system is wide sense stationary ergodic process. From now on, throughout this paper, we consider 

the dynamical system { ([a, bl, B, µ! ), F} where F is ergodic, J is the invariant density and 

µ1(A) � l J(x)dx A EB. (6) 

B. Kolmogorov-Sinai Entropy

The Kolmogorov-Sinai (KS) entropy is the greatest average amount of information that the dy­

namical system produces about its initial state per iteration and therefore the additional minimum 

amount of information, required on the average, in each iteration to maintain an arbitrarily fine 

localization of the initial state. Consider a partition t = {Ak}f,:01 of [a, b]. The entropy of the 

partition t is given by 
K-1 

Hµ1 (0 � - L µ1(Ak) ln µ1(Ak). (7) 
k=O 

When no iterations of F on the system initial state x0 are considered, we need, on the average, 

Hµ
1 (t) nats in order to determine in which set Ak the initial state X0 is. When N - l iterations 
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are considered 

H
µ, (:1: p-n(e))

nats are needed to determine which set of 

where 

N-1 
K 1 

V p-n(e)�{Ak1nF-1(Ak2)n ... np-(N-l)(AkN)} - ,
n=O k1,k2 , ... ,kN=O 

p-n(A) £ { x E [a, b]JFn(x) EA},

includes X0 . The KS entropy, H
µ1 

(F), is given (13] by 
- ·  

where 

Hµ1 
(F) £ sup H

µ1 
(F, e)

e,H,,,W<oo 

Hµ1 (F, e) £ J�
00 

�H
µ1 (:1: p-n(e))

(8) 

(9) 

(10) 

(11) 

(12) 

where the limit always exists [13]. A partition e achieving the supremum is called a generating
partition. For example, in the case of the r-diadic map the partition 

is a generating partition (13] and 

C. Chaotic Systems
H

µ1 
(F) = ln r nats. 

(13) 

(14) 

Chaotic dynamical systems are characterized by high sensitivity to the initial state. In chaotic 

systems, the orbits Oft (x0) and Ot(xo +t:) originating from nearby initial states, x0 and x0 +t:, t: < < 

1, respectively, diverge exponentially fast as N grows large. Chaotic systems exhibit high local 

instability while maintaining global bounciness. A commonly used definition of chaotic system is 

that based on the statistical quantities called the Lyapunov exponents [19]. The Lyapunov exponent,
>.(x), associated with the dynamical system {([a,b],B,µ1),F} is defined as 

>.(x) £ J�
00 

� ln I dF:�
l(

x
) I, x E [a, b] (15) 

provided that the limit exists. In general, >.(x) depends on x. However, when Fis ergodic, Oseledec's
Theorem [19] tells us that 

>.(x) = >. £ Eln jP(x)J a.e.
F(x) £ d��x). 

(16) 

(17) 

where the expectation is with respect to the invariant density f, and is assumed to exist. If>.> 0, 

the system is chaotic, otherwise the orbits eventually converge to a fixed point or behave periodically. 

For example, in the case of the r-diadic map we have 

>. = Eln I.Fr(X)I = lnr. 
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The r-diadic map is defined for r > 1, so ,\ > 0, and therefore the system is chaotic. 
D. Symbols of Dynamical Systems

Orbits of dynamical systems can be represented by using the so called symbols of the system, denoted 
here by {S[n]}��a1- A symbol S[n] ES= {so, ... , sx-d indicates to which subset of the generating
partition�= {Ao, ... ,Ax-d, the state X[n] belongs, i.e.,

S[n]=sk if X[n]EAk. k=O,l, .. . ,K-1. (19) 

In the case of a non-invertible map F, knowing X[n] and S[n -1] E S is sufficient to determine 
X[n - 1] and then it can be written that 

X[n -1] = ¢(S[n - 1], X[n]). (20) 

where the map¢ is referred to as the inverse of F given symbol. Using (20), an orbit of a dynamical 
system, {X[n]}��a1, can be represented in the symbol-based form, ( {S[n]}��l, X[N-1]). Sometimes 
there is an advantage in using the symbol-based representation like in [20] where it was used to derive 
the maximum likelihood estimator of the chaotic "tent" map sequences. The symbols {S[n]}��l 
are identically distributed, discrete-valued random variables with the probability law 

Pr(S[n] = Sk) = { f(x)dx, k = 0, ... , K -1.}Ak 

For example, in the case of the r-diadic map we have that 
[k - 1 k)

S[n]=k if X[n]E -r-,; . k=0,1, ... ,r-1 

1 1 ¢(s, x) = -x + -s,r r 
N-2

l X[n] = L S[i]r-(i-n+l) + rN-n-l X[N -1), n = 0, 1, ... , N - 1 

and the symbols are uniformly distributed across S = {O, 1, ... , r -1 }. 

(21) 

(22) 

(23) 

(24) 

For chaotic systems, we can expect that as N increases, the subsets visited during the system 
evolution become more and more different for different initial states and in the limit as N � oo, 
they determine exclusively the initial state X(O]. This intuition is true. There is a one-to-one map 
a.e. between the initial state X(O] and the infinite sequence of symbols {S[n]};::'=

0 
[13]. For example,

in the case of the r-diadic map (assigning n = 0 and taking N � oo in (24)) the infinite sequence 
of symbols is the infinite-length radix-r representation of X(O], which is known to constitutes one-
to-one map a.e. 

The symbols { S[n]}��a1 completely determine the subset to which the initial state belongs, 
therefore Hµ.1 

(v:,:
0

1 p-n(O) = H ({S[n]}��a1). Thus 
1Hµ.1 

(F) = lim NH ( {S(n]}��0
1
) = H(S).N-+oo 

(25) 
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where H(S) is the entropy rate of S[n]. Combining (25) with the Pesin relation for chaotic systems

[24], stating that H
µ1 

(F) ::; .>., we have the relation

H(S) = H
µ1 

(F) ::; .>.. (26)

3 The Threshold Effect 

In this section, we prove the existence of a threshold effect in the estimation of chaotic sequences as

the number of observations grows without bound. Using the data processing tfieorem, we derive a

lower bound on the mean square error obtained by any estimator of the initial state. We compare

that bound with the Bayesian Cramer-Rao bound and show that below certain SNR level, the

Bayesian Cramer-Rao bound is not tight, thus the existence of the threshold effect is proved.

We consider the problem of estimating the initial state of the chaotic system { ([a, b], B, µ1 ), F}

given the noisy observations Y[O], ... , Y[N - 1],

Y[n] = X[n] + W[n] n = 0, 1,, ... , N - 1, (27)

where {X(n]};;,;a1 is the chaotic sequence and {W[n]};;,;a1 is zero-mean white Gaussian noise with

variance r;2. Let X = [X[O] ... X[N - l]f, Y = [Y[O] ... Y[N - l]f. The average power of

{ X[n]};;,;l is

and the channel SNR is then

N-1 

P = ! I: E{X2 [n]} = E{xn,
n=O 

SNR = !_ = 

E{X5}
.r;2 r;2 

(28)

(29) 

The Bayesian Cramer-Rao bound, associated with the estimation of the initial state of the dynamical

system {([a,b],B,µ1),F}, is given by

where

pn(x) � dF;;x)' n EN

cp(x) � ( 
dln

d�(x)) 
2

, 

(30) 

(31)

(32)

and the expectation is with respect to the invariant density f. This bound can readily be derived

by extending the previously obtained parametric Cramer-Rao bound (17] into the Bayesian case.

Theorem 3.1. Let {([a, b], B, µ! ), F} be a dynamical system with an ergodic mapping F, let f be the 
invariant density assumed to satisfy f 2:: e > 0 a. e., and let >. be the system's Lyapunov exponent. 
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Let CRB denote the Bayesian Cramer-Rao bound associated with the estimation of initial state. 

Then, 

The proof appears in Appendix A. 

lim inf Nl lnCRB < -2.A..
N-+oo 

- (33) 

We now use the data processing theorem to derive a lower bound on the mean square error ob­

tained by any estimator of the initial state. 

Theorem 3.2. For a given dynamical system { ((a, b], B, µf ), F}, and an arbit�ary estimator .X(OJ 

of the initial state, let 

D � E{(X[OJ - X[0])2}. 

Under the assumptions of Theorem 3.1, we have 

where 

lw_:};J,f � lnD � -2J(X; Y)

-1( V. Y) � 1· I(K; 1:) �'- - 1m sup 
N 

,
N-+oo 

and I(X; Y) is the mutual information between X and Y. 

Proof. The random variables (X[O],X, Y,X[O]) constitute a Markov chain 

X[O] -+ X -+ Y -+ X[O). 

Therefore, according to the data processing theorem [4] we have 

R(D) � I(X[O]; .X[O]) � I(X; Y),

(34) 

(35) 

(36) 

(37) 

(38) 

where R(D) is the rate-distortion function of a random variable distributed according to f. Using 

Shannon's lower bound (4], we have 

1 (
e2h(X)) 

R(D) � -ln --
2 21reD 

where h(X) is the differential entropy induced by f. Incorporating (39) into (38,) we have 

1 (e2h(X)) 
I(X; Y) � 

2 ln 
21reD

Dividing both sides of by N and taking N-+ oo, we have 

which is the desired result •· 
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Lemma 3.3. For a given channel input distribution, the mutual information I(X; Y) is a strictly

increasing function of the SNR. 

Proof. Follows immediately from the data processing theorem [4] •.

Motivated by Lemma 3.3, we now introduce the notation:
I(SNR,N) £J(X;Y), I(SNR) £J(X;Y). (42) 

As I(SN R) is a strictly increasing function of the SN R, it has an inverse function, denoted here as
1- 1 (.), which is also an increasing function.
Corollary 3.4. Under the assumptions of Theorem 3.1, 

. . 1 ( D ) l
}.,,-
r�}�f 

N 
ln 

CRB � 2 (>. - I(SNR)).

Proof. Combining (35) and (33) immediately yields the desired result •-
Corollary 3.5. Under the assumptions of Theorem 3.1, we have that for

SNR < 1-1 (>.) £ SNR* 

no estimator of the initial state can be asymptotically efficient. Moreover, 

1. D 
N1!{1oo CRB = oo. 

Proof. Follows directly from Corollary 3.4 •.

(43)

(44)

(45) 

If an estimator of the initial state asymptotically achieves the Bayesian Cramer-Rao bound it may
do so only beyond a threshold SN R, denoted here by SN Rth, which is lower bounded by

SNRth � SNR*. (46) 

Since the system is chaotic (>. > 0) then:
SNR* = r

1 (>.) > r
1 (O) = 0, (47) 

ensuring that the bound on the threshold SN R is nontrivial. The above analysis explains why there
will always be a threshold effect: below some threshold SNR, a sharp degradation in performance,
of exponential order, as Corollary 3.4 indicates, will occur. Corollary 3.5 provides us with a lower
bound on the threshold SNR. We now show how the existence of the threshold effect is actually
tied to the converse to the joint source-channel coding theorem [4]. As mentioned above, sharp
degradation, of exponential order, in performance starts when

I(SNR) < >.. (48) 
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