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Anomaly Preserving ℓ2,∞-Optimal

Dimensionality Reduction over a Grassmann

Manifold
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Abstract

In this paper, we address the problem of redundancy reduction of high-dimensional noisy signals that

may contain anomaly (rare) vectors, which we wish to preserve. Since anomaly data vectors contribute

weakly to the ℓ2-norm of the signal as compared to the noise, ℓ2-based criteria are unsatisfactory for

obtaining a good representation of these vectors. As a remedy, a new approach, named Min-Max-

SVD (MX-SVD) was recently proposed for signal-subspace estimation by attempting to minimize the

maximum of data-residual ℓ2-norms, denoted as ℓ2,∞ and designed to represent well both abundant and

anomaly measurements. However, the MX-SVD algorithm is greedy and only approximately minimizes

the proposed ℓ2,∞-norm of the residuals. In this paper we develop an optimal algorithm for the minization

of the ℓ2,∞-norm of data misrepresentation residuals, which we call Maximum Orthogonal complements

Optimal Subspace Estimation (MOOSE). The optimization is performed via a natural conjugate gradient

learning approach carried out on the set of n dimensional subspaces in IRm, m > n, which is a Grassmann

manifold. The results of applying MOOSE, MX-SVD, and ℓ2 - based approaches are demonstrated both

on simulated and real hyperspectral data.

Index Terms

Signal-subspace rank, singular value decomposition (SVD), Min-Max-SVD (MX-SVD), Maximum

Orthogonal-Complements Analysis (MOCA), Hyperspectral Signal Identification by Minimum Error

(HySime), anomaly detection, dimensionality reduction, redundancy reduction, hyperspectral images,

Grassmann manifold.
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I. INTRODUCTION

Dimensionality reduction plays a key role in high-dimensional data analysis. In many sensor-array

applications, meaningful signal structure belongs to a low-dimensional signal-subspace embedded in the

high-dimensional space of the observed data vectors. There are many reasons that make dimensionality

reduction of the observed data vectors crucial. For instance, dimensionality reduction allows improving

SNR by eliminating dimensions that do not carry valuable signal information, but may contain noise that

compromises the application performance; In applications such as anomaly detection and/or classification

there is a problem related to high dimensional spaces due to so called Hughes phenomenon [1], according

to which the performance of anomaly detection/classification algorithms significantly deteriorates when

the number of training samples is severely limited for an accurate learning of the corresponding signal

models; Dimensionality reduction allows reducing computational costs, as well as storage volumes.

Numerous existing methods aim to estimate a low-dimensional signal-subspace that adequately reflects the

meaningful signal structure. In this paper, we focus on applications that analyze data containing anomaly

vectors in which the estimated signal-subspace should contain (preserve) anomaly vectors. The considered

applications may require the estimated signal-subspace to be of a rank that is much lower than the observed

dimensionality, and may be even lower than the physically meaningful signal structure. Such applications

may be anomaly detection or classification, where Hughes phenomenon poses a serious problem for

working in high-dimensional space, and in which the critical anomaly-related information should be

retained even at the expense of the background information. Another example may be compression-

related applications that may have similar background-anomaly related tradeoffs.

The commonly assumed observation model satisfies:

xi = Asi + zi, i = 1, . . . , N, (1)

where xi ∈ IRp is the observed vector, zi ∈ IRp is the data-acquisition or/and model noise; si ∈ IRr, and

A ∈ IRp×r is a full-rank matrix with rank r, (r ≤ p). An example of application employing this model

is anomaly detection in hyperspectral images. Here, the columns of A are the pure materials spectra

(endmembers) and si their corresponding abundances [21]. 1

A number of approaches have been proposed in the literature (e.g., [17], [18], [19]) for signal-subspace

1Due to physical reasons, {si} are constrained to be non-negative. However, for the dimensionality reduction that merely

deals with the determination of the column space of A and not with the exact determination of A and/or {si}, the constraints

on {si} may be omitted and the pure signal vectors may be regarded as just a set of vectors lying in the column space of A

without any relevance to {si}.
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estimation under the assumption that si and zi are independent, stationary, zero-mean and Gaussian. It

was shown in [2] that for white noise zi, the classical principal components analysis (PCA) method for

signal subspace estimation is optimal in the Maximum-Likelihood (ML) sense. It determines the signal

subspace by minimizing the ℓ2-norm of misrepresentation residuals belonging to the complementary

subspace, which can be obtained via Singular Value Decomposition (SVD) of X, which is a matrix of

observed data vectors {xi} ordered as its colums. The authors of [15], propose a new ℓ2-based approach,

named as HySime, designed to determine both the signal subspace and its rank in hyperspectral imagery.

The method first estimates the signal and noise covariance matrices. Then, they use the assumption

on the nonnegativity of {si} in order to estimate the signal subspace rank by finding the subset of

eigenvalues that best represents, in the ℓ2-sense, the mean value of the data set. The signal subspace

is obtained by applying SVD on the noise-reduced covariance matrix of the data. Unfortunately, as we

show in [3], the ℓ2-based criterion is unsatisfactory for obtaining a reliable representation of the anomaly

(rare) vectors, which typically contribute weakly to the ℓ2-norm of the signal as compared to the noise.

Nevertheless, the proper representation of rare vectors may be of high importance in denoising and

dimensionality reduction applications that aim to preserve all the signal-related information, including rare

vectors, within the estimated low-dimensional signal-subspace. For example, in a problem of redundancy

reduction in hyperspectral images, rare endmembers that are present in just a few data pixels contribute

weakly to the ℓ2-norm of the signal. Therefore, their contribution to the signal-subspace cannot be

reliably estimated using an ℓ2-based criterion. As a remedy, we propose in [3] a novel approach, named

Maximum Orthogonal-Complements Algorithm (MOCA), which employs a so-called ℓ2,∞ norm for both

signal-subspace and rank determination, designed to represent well both abundant and rare measurements,

irrespective of their frequentness in the data. Mathematically, the ℓ2,∞-norm of a matrix X is defined as

follows:

‖X‖2,∞ , max
i=1,...,N

‖xi‖2, (2)

where xi denote columns of X. In words: ‖X‖2,∞ means the maximum of ℓ2-norms of X columns.

When ℓ2,∞-norm is applied to the misrepresentation residuals, it penalizes individual data-vector

misrepresentations, which helps to represent well not only abundant-vectors, but also rare-vectors. In

[4] we show that the ℓ2,∞-norm can be efficiently used for the detection of anomalies as well. However,

the algorithm developed in [3] for signal-subspace estimation, named Min-Max-SVD (MX-SVD), is greedy

and only approximately minimizes the proposed ℓ2,∞-norm of misrepresentation residuals. In this paper

we propose a new algorithm that utilizes a natural conjugate gradient learning approach proposed in
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[5] to minimize ℓ2,∞-norm of the misrepresentation residuals, where the signal-subspace basis matrix is

constrained to the Grassmann manifold defined as the set of all n dimensional subspaces in IRm, n ≤ m

[5]. Since ℓ2,∞-norm of the misrepresentation residuals can be also referenced as the maximum orthogonal

complement norm, we denote the proposed approach as Maximum of Orthogonal complements Optimal

Subspace Estimation (MOOSE).

This paper is organized as follows: In Section II we provide a brief overview of MX-SVD, the greedy

algorithm for signal-subspace determination, proposed in [3]. In Section III we develop the proposed

MOOSE algorithm. The results of applying MOOSE, SVD and MX-SVD are demonstrated on simulated

(Section IV). The results of applying MOOSE, SVD, MX-SVD and HySime are demonstrated on real

hyperspectral data (Section V). Finally, in Section VI, we conclude this work.

II. OVERVIEW OF MX-SVD

In this section we provide a short overview of Min-Max SVD (MX-SVD), the greedy algorithm

for signal-subspace determination, proposed in [3], designed to estimate an anomaly-preserving signal-

subspace. Ideally, according to [3], given the estimated signal-subspace rank, k, the anomaly-preserving

signal-subspace Ŝk should satisfy:

Ŝk = argmin
L

‖PL⊥X‖2
2,∞

s.t. rank L = k, (3)

where PL⊥ denotes an orthogonal projection onto L⊥. The greedy technique for the minimization of (3),

used in [3], is to constrain the sought Ŝk basis to be of the following form:

Ŝk = range [Ψk−h|Ωh] , (4)

where Ωh is a matrix composed of h columns selected from X, and Ψk−h is a matrix with k − h

orthogonal columns, obtained via SVD of PΩ⊥

h
X. The main idea of MX-SVD is to collect anomaly

vectors into Ωh in order to directly represent the anomaly vectors subspace. Since anomaly vectors are

not necessarily orthogonal to background vectors, the matrix Ωh also partially represents background

vectors. The residual background vector contribution to the null-space of Ω⊤
h is represented by principal

vectors found by applying SVD on PΩ⊥

h
X.

The determination of the basis vectors of Ŝk in terms of [Ψk−h|Ωh] is performed as follows: First,
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we initialize [Ψk|Ω0], such that

Ψk = [u1, . . . ,uk] ; Ω0 = [], (5)

where u1, . . . ,uk are k principal left singular vectors of X.

Then, a series of matrices {[Ψk−j |Ωj ]}k
j=0 is constructed such that

Ωi+1 = [Ωi|xωi
] (6)

Ψk−i−1 =
[

ψ1, . . . ,ψk−i−1

]

, (7)

where, for each i = 0, . . . , k − 1, ωi is the index of a data vector xωj
that has the maximal residual

squared norm ri:

ωi , argmax
n=1,...,N

‖P[Ψk−i|Ωi]
⊥ xn‖, (8)

ri , ‖P[Ψk−i|Ωi]
⊥ xωi

‖2, (9)

and ψ1, . . . ,ψk−i−1 are k − i − 1 principal left singular vectors of PΩ⊥

i+1
X. Thus, the k columns of

[Ψk−j |Ωj ], for each j = 0, . . . , k, span k-dimensional subspaces, respectively. Each subspace is spanned

by a number of data vectors collected in the matrix Ωj and by SVD-based vectors that best represent

(in ℓ2 sense) the data residuals in the null-space of Ω⊤
j . Moreover, each subspace is characterized by it’s

maximum-norm misrepresentation residual rj . The greedy signal-subspace estimation Ŝk is selected as

in (4), with

h = argmin
j=0,...,k

rj . (10)

This policy combines the ℓ2-based minimization of background vector-residual norms with ℓ∞-based

minimization of anomaly vector residual norms, which produces a greedy estimate Ŝk that approximately

satisfies (3). A flowchart summarizing the MX-SVD process is shown in Fig. 1.

III. MINIMIZING ℓ2,∞-NORM ON THE GRASSMANN MANIFOLD

A. Problem formulation

Generally, the problem stated in (3) can be recast as

Ŝ = argmin
[W]

F ([W]), (11)



6

Fig. 1. MX-SVD flowchart. For a given signal subspace rank value k, constructs a signal-subspace basis of the form

Ŝk = [Ψk−h|Ωh], h ∈ integers [0, k], which approximately minimizes ‖P
Ŝ⊥

k
X‖2

2,∞, where Ωh is responsible for representing

anomaly-vectors and, partially, background vectors; Ψk−h complements Ωh to represent background vectors in the ℓ2-sense.

where the objective function F ([W]) is defines as

F ([W]) , ‖W⊤X‖2
2,∞ (12)

and [W] is an equivalence class of all p × (p − k) orthogonal matrices whose columns span the same

subspace in IRp as W. Here [W] represents the orthogonal complement subspace to the sought signal-

subspace Sk. The set of all n-dimensional subspaces in IRm, denoted by Gm,n, is called the Grassmann

manifold [5]. The geometrical structure of the Grassmann manifold allows a continuous choice of

subspaces, which is essential for constructing a local minimization procedure. Without loss of generality,

by necessity, we must pick a representative of the equivalence class [W], say W, in order to be able to

work with [W] on the computer. Thus, by smoothly changing W, such that [W] ∈ Gp,p−k we would be

able to continuously move from one subspace to another and iteratively improve the objective function

in a maner similar to well known unconstrained gradient-based algorithms such as steepest descent and
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conjugate gradient [23].

B. Grassmann manifold geometry

As stated in [5], the benefits of using gradient-based algorithms for the unconstrained minimization of

an objective function can be carried over to a minimization constrained to the Grassmann manifold. The

familiar operations employed by unconstrained minimization in the Euclidean space (plain space) such

as computing gradients, performing line searches, etc., can be translated into their covariant versions on

the Grassmann manifold (curved space).

In the following we briefly outline basic results from [5] used in this work for calculating gradients of

an objective function and performing a line search along a search direction on the Grassmann manifold.

Then, we develop a technique for minimizing F ([W]) of (12).

1) Gradient on Grassmann: The gradient of the objective function F ([W]) on the Grassmann manifold

is defined to be a matrix ∇F ∈ T[W], where T[W] is the tangent space at [W], such that for all T ∈ T[W],

the following holds:

〈FW,T〉 = 〈∇F,T〉 , (13)

where FW is the p× (p− k) matrix of partial derivatives of F with respect to the elements of W; 〈·, ·〉
denotes the standard inner product in p × (p − k) - dimensional Euclidean space defined as

〈△1,△2〉 , tr(△⊤
1 △2). (14)

In words, the relation in (13) states that the gradient of F ([W]) on the Grassmann manifold is the

projection of FW onto T[W]. Since T[W] is the set of subspaces spanned by the columns of matrices of

the form

T = W⊥B, (15)

where B are arbitrary k × k matrices and W⊥ is a p × k orthogonal matrix satisfying

WW⊤ + W⊥W⊤
⊥ = I, (16)

one obtains

∇F = FW − WW⊤FW. (17)

A more rigorous treatment of these intuitive concepts is given in [5] where a solid foundation framework

for the optimization algorithms involving orthogonality constraints is developed.
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2) Line search: The line search in the Grassmann manifold is defined to be the minimization of

F ([W]) along a geodesic, which is the curve of shortest length between two points in a manifold.

By noticing that the geodesic equation is a second-order ODE, it follows from the local existence and

uniqueness theorem that for any point p in a manifold and for any vector v in the tangent space at p,

there exists a unique geodesic curve passing through p in the direction v [6]. This observation makes the

generalization of local optimization methods straightforward: given a descent direction H ∈ T[W] (for

example, H = −∇F ), the objective function F ([W]) is minimized by the line search along the geodesic

passing through [W] in the direction H. An easy to compute formula for geodesics on the Grassmann

manifold proposed in [5] reads as:

W(t) = (WV U)





cos (tΣ)

sin (tΣ)



V⊤, (18)

where t is a geodesic curve traversing parameter and UΣV⊤ is the compact singular value decomposition

(SVD) of H. Compact SVD here means that the zero singular values are discarded along with the

respective columns in U and V, and the singular values are set in a decreasing order in Σ. It can be

easily verified that the diagonal elements of the matrix tΣ traverse Principal angles [10] between the

column spaces [W(t)] and [W]. Thus, for t = 0, one obtains the original subspace [W] that is rotated

by the angles tΣ when t increases. Moreover, the geodesic distance between [W(t)] and [W] on the

Grassmann manifold denoted by d([W(t)], [W]) satisfies [5]:

d([W(t)], [W]) = t
√

tr(Σ2). (19)

It should be noted that for large t values, the distance d([W(t)], [W]) is not the shortest one between [W]

and [W(t)], since for large t, [W(t)] may complete one or more full circles in terms of the angles on the

diagonal of tΣ. However, it is still true that locally, for small t increments, [W(t)] is the shortest path

on the Grassmann manifold connecting points on it. Moreover, the relation (19) implies that the rotation

velocity, when one traverses the geodesic [W(t)] by changing t, equals to
√

tr(Σ2) and, therefore, may

change from iteration to iteration. In order to make it constant during the line search for all iterations,

the matrix Σ is normalized:

Σ̃ , Σ�
√

tr(Σ2). (20)

Now, the line search is performed by looking for t that corresponds to a “significant reduction” of the

objective function along a geodesic [W(t)]. The notion of “a significant reduction” means that, on one
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hand, t should be low enough to ensure reduction of the objective function value; on the other hand,

the search step t should be large enough for fast algorithm convergence. For this purpose, we use the

Backtracking-Armijo linesearch method [23], [24] summarized in Algorithm 1.

Algorithm 1 Backtracking-Armijo line search.

Given a geodesic [W(t)] in a descending direction H, α ∈ (0, 0.5), β > 1, t := t0
Backtracking:

while (F ([W(t)]) > F ([W]) + α t 〈∇F,H〉), t := t/β
Armijo:

while (F ([W(t)]) ≤ F ([W]) + α t 〈∇F,H〉) and (F ([W(β t)]) < F ([W]) + α β t 〈∇F,H〉), t := βt

In words, if the value of t is too large, it is iteratively decreased by dividing it by β in the Backtracking

“while” stage, until the following condition holds:

F ([W(t)]) ≤ F ([W]) + α t 〈∇F,H〉 . (21)

Since H is a descent direction and α < 1, we have 〈∇F,H〉 < 0, so for small enough t, the following

holds:

F ([W(t)]) ≈ F ([W]) + t 〈∇F,H〉 ≤

≤ F ([W]) + α t 〈∇F,H〉 ≤ (22)

≤ F ([W]),

which shows that the Backtracking “while” expression eventually terminates and that t is small enough

to cause a decrease of the objective function value.

If the value of t is too small, it is iteratively increased by multiplying it by β in the Armijo “while”

stage, until the condition (21) is concurrently satisfied with:

F ([W(β t)]) ≥ F ([W]) + α β t 〈∇F,H〉 . (23)

In words, t is increased until it reaches a point in which it is still small enough to satisfy condition (21),

but already large enough so that it is no longer satisfied in the next iteration, i.e., when βt replaces t

(see (23)).
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C. Minimization of F ([W]) on the Grassmann manifold.

In this subsection we develop a technique for solving (11) for F ([W]) of (12) on the Grassman

manifold. A natural choice for the search direction is the negative gradient H = −∇F [7]. The calculation

of ∇F involves the calculation of FW (see (17)). For the calculation of FW we consider here two cases:

One case is when the maximum is obtained for only one data vector, while the other case is when the

maximum is obtained for more than one data vector.

Case 1. If the maximum is obtained for only one vector at each W throughout the minimization, the

calculation of FW becomes straightforward:

FW = xjx
⊤
j W, (24)

where xj is the vector for which max
i=1,...,N

‖W⊤xi‖2 is obtained.

Case 2. If the maximum is obtained for a set of indices J that contains more than one index, then the

gradient direction Ĝ = FW�‖FW‖2 is given by solving the following problem:

Ĝ = max
G

min
j∈J

〈

G,xjx
⊤
j W

〉

s.t.
〈

G,xjx
⊤
j W

〉

> 0 ∀j ∈ J (25)

〈G,G〉 = 1,

with 〈·, ·〉 being defined in (14). In words, it is a unit-norm matrix that maximizes the minimal projection

norm onto gradients obtained individually for each xj , j ∈ J (as in (24)). If the problem (25) is feasible,

then the direction −Ĝ is guaranteed to be a descent direction for all maximal residual norms ‖W⊤xj‖,

j ∈ J , since all projections are constrained to be positive. Moreover, it is the steepest descent direction of

the objective function F ([W]), because the descent rate of F ([W]) is determined by the lowest descent

rate of the maximal residual norm ‖W⊤xj‖, for some j ∈ J , which is maximized (see the problem

formulation in (25)). If the problem is infeasible, then [W] is a local minimum of the objective function

F ([W]), since there is no search direction that concurrently minimizes all maximal residual norms. The

problem (25) can be efficiently solved by Second-Order Cone Programming (SOCP) [23]. The norm of

the derivative matrix ‖FW‖ is given by

‖FW‖ = min
j∈J

〈

Ĝ,xjx
⊤
j W

〉

, (26)
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I.e., it equals to the lowest descent rate of the the maximal residual norms, or equivalently, to the descent

rate of F ([W]) in the direction Ĝ.

Practically, we have observed that in real data distributions the maximum is obtained for only one

vector with probability close to one. Therefore, using (24) is good enough (practically) for obtaining a

steep descent direction as we did in our simulations.

However, minimizing F ([W]) along the geodesic given by −∇F , may slow down the algorithm

convergence due to an alternation of the competing maximum-norm data vectors from iteration to iteration.

This phenomenon is also notoriously known as the zig-zag pattern pertaining to steepest descent methods

[7]. In order to better cope with the complex nature of the cost function F ([W]), we propose to use the

conjugate gradient method. According to this method, the conjugate search direction is a combination of

the previous search direction and the new gradient

Hs+1 = −∇Fs+1 + γsH̃s, (27)

where s denotes the iteration index, H̃s is the parallel translation of the previous search direction Hs

from the point [Ws] to [Ws+1] by removing its normal component to the tangent space TWs+1, as

schematically shown in Fig. 2; and γs is obtained via Polak Ribiére conjugacy condition formula [5]

γs =
〈

∇Fs+1 − ∇̃Fs,∇Fs+1

〉

� 〈∇Fs,∇Fs〉 , (28)

where ∇̃Fs is the parallel translation of ∇Fs obtained in the same way as H̃s. The parallel translation is

needed in order to keep all directions within the tangent space at each iteration. The formula for obtaining

∇̃Fs and H̃s is [5]:

H̃s = (−WsVsin(tΣ̃) + Ucos(tΣ̃))ΣV⊤ (29)

∇̃Fs = ∇Fs −

(WsVsin(tΣ̃) + U(I − cos(tΣ̃))U⊤∇Fs.

The conjugate gradient construction offers a good compromise between convergence speed and compu-

tational complexity [9]. If the objective function is nondegenerate (locally quadratic), then the algorithm

is guaranteed to converge quadratically in the Euclidean space [12]. The authors of [5] also show that

in the Grassmann manifold, conjugate gradient algorithms also yield a quadratic convergence, i.e., for a

manifold of dimension d, one has to perform a sequence of d steps to get to a distance within O(ǫ2) from

the solution. However, in our problem it is not guaranteed that the ℓ2,∞-based cost function is locally
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Fig. 2. Parallel transport on Grassman manifold.

quadratic. Therefore, there is no guarantee that the conjugate gradient descent procedure converges in

d iterations. Fortunately, we have empirically found that the conjugate gradient descent method still

significantly outperforms the gradient descent method in our problem. It is a common fact that conjugate

gradient methods empirically still significantly outperform gradient descent methods even for nonconvex

problems. In our case, a possible explanation to this may be as follows: The contribution of the previous

search direction in each iteration, also helps the procedure to employ information that is carried in maximal

norms obtained earlier (for possibly different data vectors). I.e., using the conjugate gradient direction

helps to simultaneously minimize maximum-residual norms of vectors obtained in previous iterations.

This helps to prevent the algorithm slow down due to an alternation of data-vectors corresponding to

maximal-residual norms obtained from iteration to iteration.

As any local minimization of a non-convex objective function, the proposed algorithm is prone to

getting trapped in a local minimum. Therefore, a proper initialization may be crucial for obtaining a

good solution. Since MX-SVD finds a suboptimal solution using global principles, it provides a good

initial point, which is close to the global minimum. Therefore, in our simulations we use the subspace

obtained by MX-SVD as an initial point for the proposed approach.

The proposed approach for minimizing F ([W]) is summarized in Algorithm 2.

IV. SYNTHETIC DATA SIMULATION RESULTS

In this section we compare the results of applying SVD, MX-SVD and MOOSE to simulated examples

in the presence of anomaly vectors. For this purpose the input data is constructed as follows:

X = Y + Z, (30)

with

Y =
[

√

SNRb BSb |
√

SNRa ASa

]

, (31)



13

Algorithm 2 Conjugate gradient algorithm for minimizing F ([W]) on the Grassmann manifold.

1 Given W0, such that W⊤
0 W0 = Ip−k and column space that coincides with the subspace

obtained by MX-SVD, compute

FW0
= xjx

⊤
j W0, with j satisfying ‖W⊤

0 xj‖2 = ‖W⊤
0 X‖2

2,∞

∇F0 = FW0 − W0W
⊤
0 FW0 and set H0 = −∇F0

2 For s = 0, 1, . . .,

2.1 Obtain the compact decomposition of Hs, Hs = UΣV⊤

2.2 Normalize the principal angles Σ̃ = Σ�
√

trΣ2

2.3 Perform Backtracking-Armijo line search (see Algorithm 1) along the geodesic

W(t) = WsVcos(tΣ̃)V⊤ + Usin(tΣ̃)V⊤

2.4 Update the subspace Ws+1 = W(t)

2.5 Parallel transport the tangent vectors Hs and ∇Fs to the point [Ws+1]

H̃s =
(

−WsVsin(tΣ̃) + Ucos(tΣ̃)
)

ΣV⊤

∇̃Fs = ∇Fs −
(

WsVsin(tΣ̃) + U(I − cos(tΣ̃)
)

U⊤∇Fs

2.6 Compute the new gradients

Euclidean: FWs+1
= xjx

⊤
j Ws+1, with j satisfying ‖W⊤

s+1xj‖2 = ‖W⊤
s+1X‖2

2,∞

Grassmann: ∇Fs+1 = FWs+1 − Ws+1W
⊤
s+1FWs+1

2.7 Compute the new search direction via Polak Ribiére conjugacy condition formula

Hs+1 = −∇Fs+1 + γsH̃s, where γs =
〈

∇Fs+1 − ∇̃Fs,∇Fs+1

〉

� 〈∇Fs,∇Fs〉

where B is a p× rb matrix with orthogonal unit-norm columns spanning the background subspace; A is

a p× ra matrix with orthogonal unit-norm columns spanning the subspace of anomalies; Sb is a rb ×Nb

matrix of background vector coefficients with columns drawn randomly from a Gaussian distribution with

covariance matrix Cb = I�rb; Sa is a ra×Na matrix of anomaly vector coefficients with columns drawn

randomly from a Gaussian distribution and normalized to have unit-norm; and Z is a p × (Na + Nb)

matrix containing white Gaussian noise with variance equal to 1/p.

For SNR defined as

SNR , E{‖y‖2}�E{‖z‖2}, (32)

one can easily verify that background vectors have SNR = SNRb, whereas the anomaly vectors have

SNR = SNRa. Moreover, due to the structure of the anomaly vector coefficient matrix Sa, the norms

of noise-free anomaly vectors are equal. This construction is designed to produce anomaly vectors that

are equally significant.

Obviously, anomaly vectors are characterized by their low number compared to the number of back-

ground vectors, i.e., Na ≪ Nb. However, their number is allowed to be higher than the anomaly subspace
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dimension that they belong to, i.e., Na ≥ ra. The extent of anomaly subspace population (loading) can

be characterized by the loading ratio defined as follows:

Ra , Na�ra, (33)

Thus, the minimal loading ratio Ra = 1 corresponds to the case where the number of anomalies is equal

to the anomaly subspace rank. The larger the value of Ra is, the more anomaly vectors populate the

anomaly subspace.

In our simulations we used the parameters shown in Table I. It is important to note that all parameters

TABLE I

MAXIMUM RESIDUAL-NORM SIMULATION PARAMETERS

p rb ra Nb Na SNRb SNRa

100 5 5 105 10 100 10

were selected to reflect a typical situation in hyperspectral images. Thus, SNRa and SNRb were selected

to satisfy SNRa < SNRb since the anomaly and the background subspaces in hyperspectral images are

not orthogonal and, therefore, the anomaly vectors have weak orthogonal components to the subspace of

background vectors.

In Fig. 3 one can see empirical pdfs of the maximum-residual norm ‖W⊤X‖2
2,∞ obtained via a Monte-

Carlo simulation, where X was generated 1000 times. As mentioned in [3], the estimated subspace by

SVD may be skewed by noise in a way that completely misrepresents the anomaly vectors, since SVD

uses ℓ2 norm for penalizing the data misrepresentation, which is not sensitive to the anomaly-vector

contributions. Hence, as clearly seen from the figure, the max-norm data residuals obtained by SVD

(thick solid line) have high values which correspond to a poor representation of the anomaly vectors. It

is also demonstrated in [3] that for Ra = 1 MX-SVD yields

‖W⊤X‖2
2,∞ ≈ ‖W⊤Z‖2

2,∞. (34)

In words, the empirical distribution of the maximum data residual norm ‖W⊤X‖2
2,∞ for Ra = 1 is

very close to the distribution of the maximum residual norm of noise ‖W⊤Z‖2
2,∞, which has a limiting

distribution known as the Gumbel distribution [22] (plotted in thin solid line in Fig. 3). However, as

seen in that figure, for Ra > 1 (in this simulation Ra = 2), MX-SVD produces max-norm data residuals

(whose pdf is plotted in dashed line) that are higher than the max-norm noise residuals. This happens
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since MX-SVD estimates the anomaly subspace by directly selecting rb anomalous vectors from the data

that contain noise, which skews the resulting subspace. The result is significantly improved by applying

the optimal approach which produces max-norm data residuals (whose pdf is plotted in dot-dashed line)

with values that are even lower than one would obtain from the Gumbel distribution.

The paradox of such a “super-efficiency” of the optimal approach is explained as follows: On one

hand, the Gumbel distribution approximation is valid for max-norm realizations of data vectors drawn

from Gaussian distribution. On the other hand, the max-norm data residuals obtained by MOOSE stem

no longer from a Gaussian distribution, since they are minimized by MOOSE and, as a result, become

lower than if the corresponding data vectors where randomly sampled from a Gaussian distribution.
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Fig. 3. The pdfs of ‖W⊤
X‖2

2,∞ obtained via Monte-Carlo simulation. The empirical pdfs of ‖W⊤
X‖2

2,∞ obtained by

SVD (thick solid line), MX-SVD (dashed line), MOOSE (dot-dashed line) and the limiting Gumbel distribution approximating

maximum residual norm of noise (thin solid line).

In Fig. 4 we compare SVD, MX-SVD and the proposed MOOSE algorithm in terms of subspace

estimation error. The subspace error used here is defined to be the largest principal angle ∠{Ŝ,S}
defined as follows [11]:

∠{Ŝ,S} = max
u∈Ŝ

min
v∈S

∠{u,v}, u 6= 0,v 6= 0, (35)

where Ŝ and S denote the estimated subspace and the original subspace used for the data generation,

respectively. In our simulations, for each Ra value X was generated 50 times. The considered Ra values

were sampled logarithmically in [1, 40] as shown in Fig. 4. For each Ra value we plot the mean of the

subspace estimation error values obtained by SVD (line with star marks), MX-SVD (line with circle

marks) and the proposed approach (line with diamond marks). As clearly seen from the figure, the

proposed approach corresponds to the lowest mean subspace estimation error for all Ra values. The

MX-SVD and the proposed approach perform much better than SVD for a wide range of Ra values. For

Ra values high enough SVD manages to catch up with the other two ℓ2,∞-norm based approaches, since

then the anomalies become significant in terms of the ℓ2-norm.
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∠{Ŝ,S}

Fig. 4. Mean subspace error vs. anomaly loading ratio Ra for parameters of Table I. Mean-sample of the subspace error

as a function of Ra obtained via a Monte-Carlo simulation using SVD (line with star marks), MX-SVD (line with circle marks),

and MOOSE approach (line with diamond marks).

V. REAL DATA SIMULATION RESULTS

In this section we compare the performance of SVD, MX-SVD, MOOSE and HySime when applied

to 4 hyperspectral image cubes. The images were collected by an AISA airborne sensor [25] configured

to 65 spectral bands, uniformly covering VNIR range of 400nm - 1000nm wavelengths. The obtained

image cubes are b × r × c = 65 × 300 × 479 hyperspectral images, where b, r and c denote the number

of hyperspectral bands, the number of rows and the number of columns in the image cube, respectively.

The assumed signal-subspace rank is k = 10. It was deliberately chosen to be below the real signal

subspace rank, the estimated values of which were found to be between 15-20, as obtained by applying

MOCA on the images under evaluation. This poses signal-subspace estimation algorithms in challenging

conditions, since by using a lower rank, we make the background vectors and the rare vectors compete

harder for a better representation by the estimated signal subspace. This situation may occur in practical

situations (such as local anomaly detection algorithms) where, on one hand, the application is optimized

to work better in a low dimensional subspace, while on the other hand, this subspace is required to

contain anomaly-related information.

The only ground-truth information available for this evaluation were locations of man-made objects.

In Fig. 5 are shown images of the 30th-band of each of the 4 image cubes used for the evaluation.

The ground-truth anomalies, which are marked in white and encircled by red ellipses, were manually

identified using side information collected from high resolution RGB images of the corresponding scenes.

The ground truth anomalies consist of vehicles and small agriculture facilities, which occupy few-pixel

segments.
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Since the man-made objects are anomalous in these images, it is difficult to represent them with low

error by employing the classical ℓ2-norm based methods, we evaluate the anomaly-preserving algorithm

performances in terms of the maximum residual norms obtained on the ground-truth anomalies. That

is, the best algorithm should have the following property: once applied on a whole image cube, the

ℓ2,∞-norm of the ground-truth anomaly residuals and the ℓ2,∞-norm of the whole image should be the

lowest compared to the other algorithm results obtained in all image cubes. In other words, the better

algorithm represents better not only all image pixels, but also the anomalous ones.

Thus, in Table II one can see that MOOSE has the lowest ℓ2,∞-norm of image residuals and the lowest

ℓ2,∞-norm of the ground-truth anomalies in all examined images. SVD and HySime have the highest

ℓ2,∞-norms of image residuals and anomaly residuals that are equal in all images, with a little advantage

of HySime for most of the images. This shows that ℓ2-based approaches poorly represent anomalies

and that the worst-case error obtained by SVD and HySime in the whole image is on anomalies. The

ℓ2,∞-norms of image residuals and anomaly residuals obtained by MOOSE are different, meaning that

the ℓ2,∞-norms of image residuals are obtained on the background, i.e., the anomalies were represented

even better than the background. It is instructive to note that the total CPU time consumed by MOOSE

in our evaluations was twice as long as the CPU time consumed by MX-SVD (which is used by MOOSE

for initialization). Since the results of MX-SVD are much better than those of SVD and comparable to

those of MOOSE, it turns out that practically, MX-SVD is a good choice when one is looking for an

anomaly preserving subspace estimator.

TABLE II

SUBSPACE ESTIMATION METHODS IN TERMS OF MAX. ERROR NORM

Global ℓ2,∞-norm of residuals Anomaly ℓ2,∞-norm of residuals

Cube SVD HySime MX-SVD MOOSE SVD HySime MX-SVD MOOSE

1 200.6 180.6 98.3 97.3 200.6 180.6 82.7 81.7

2 1880.8 1854.9 312.5 282.0 1880.8 1854.9 312.5 207.8

3 453.0 403.0 98.5 73.6 453.0 403.0 84.1 70.9

4 749.6 755.1 445.6 401.2 749.6 755.1 445.6 383.6

VI. CONCLUSION

In this work we have proposed an algorithm for dimensionality reduction of high-dimensional noisy data

that preserves rare-vectors. The proposed algorithm is optimal in the sense that the estimated subspace

(locally) minimizes the maximal-norm of misrepresentation residuals. The optimization is performed
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via a natural conjugate gradient learning approach carried out on the set of n dimensional subspaces

in IRm, m > n, known as the Grassmann manifold. The proposed algorithm is denoted as Maximum

of Orthogonal complements Optimal Subspace Estimation (MOOSE) and is the optimal version of a

recently proposed greedy algorithm named Min-Max-SVD (MX-SVD). As any local minimization of a

non-convex objective function, MOOSE is prone to getting trapped in a local minimum. Therefore, a

proper initialization is crucial and is obtained by employing MX-SVD that uses global principles to find

a suboptimal solution that is close to the global minimum. The results of MOOSE and MX-SVD were

compared to the results of ℓ2 - based techniques (SVD and HySime) by applying them both on simulated

data and on real hyperspectral images. It was demonstrated that the results of MOOSE and MX-SVD

are much better than those of SVD in terms of max-norm residual error, obtained in both simulated and

real data, and in terms of the subspace estimation error obtained for simulated data. Although MX-SVD

exhibits results inferior to those of MOOSE, the results of MX-SVD are quite comparable to those of

MOOSE meaning that practically, the greedy MX-SVD algorithm is a good choice, since it is more

computationally efficient.
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Fig. 5. Ground truth. A 30th-band of each one of 4 image cubes used for evaluation. The ground-truth anomalies were

manually identified, marked in white and encircled in red.


