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Abstract

This paper studies a diffusion control problem arising as the formal limit of a queueing system
scheduling problem in the asymptotic heavy traffic regime of Halfin and Whitt. The queueing
system consists of several customer classes and many exponential servers working in parallel,
grouped in several stations according to their type. Different types of servers offer service to
customers of a given class at possibly different (and possibly zero) rates. The diffusion control
problem does not seem to have explicit solutions even for simple cost criteria and therefore a
characterization of optimal solutions via Hamilton-Jacobi-Bellman (HJB) equations is addressed.
Denote by G the graph having a node for each class, a node for each type, and an edge joining
a class and a type if the corresponding service rate is nonzero. The problem turns out to be
different in nature depending on whether G is a tree or not; here we assume G is a tree. Our
main result is the existence and uniqueness for solutions of the HJB equation. Since the cost per
unit time is not assumed to be bounded, the analysis requires developing polynomial moment
estimates on the state processes. In establishing these estimates, a key role is played by an
integral formula relating queue length and idle time processes, that may be of independent
interest. Our results cover three classes of problems. (i) Service rates are either class- or type-
dependent (with general trees and costs); (ii) Trees satisfying diam(G) < 3 (with general service
rates and costs); (iii) Cost per unit time is, in an appropriate sense, comparable to the system’s
state (and trees and service rates are general).

Keywords: Multiclass queueing networks, scheduling control, heavy traffic regime of Halfin and
Whitt, buffer-station trees, optimal control of diffusions, Hamilton-Jacobi-Bellman equations,
polynomial moment estimates.

*Research supported in part by the Israel Science Foundation (grant no. 126/02), the US—Israel Binational Science
Foundation (grant no. 1999179) and the fund for promotion of research at the Technion


lesley
CCIT Report #441      August 2003


Contents

1 Introduction 2
2 The parallel station model 7
3 Fluid scaling and diffusion scaling 10
4 Buffer-station tree 13
5 The controlled diffusion and statement of main results 17
6 Estimating the state X in terms of e¢- X 22
7 An integral formula for Y and Z 25
8 The non-idling property 30
9 Case where cost is bounded below and summary of estimates 33
10 On joint work conservation 38
Appendix 39

1 Introduction

We consider optimal scheduling control for a class of queueing networks operating in heavy traffic, in
the sense that the load on the system is nearly equal to its capacity. As often occurs, exact analysis
of the control problem is unavailable and an asymptotic approach is taken, where a parametriza-
tion of the problem is introduced and a diffusion control problem is obtained in the limit. The
parametrization that has been more common in research papers on related problems (referred to
here as ‘conventional’ heavy traffic) is one where arrival and service rates are both scaled up in
a way that the system operates near full capacity. Recently, several papers have studied a differ-
ent parametrization, proposed by Halfin and Whitt [10], where increase of arrivals is balanced by
scaling up the number of (identical) servers in each service station, while keeping the service time
distribution of the individual servers fixed. In the limit as the parameter grows without bound,
conventional heavy traffic typically gives rise to diffusion processes in the orthant with reflection on
the boundary, whereas under the Halfin-Whitt (HW) regime one obtains diffusion processes taking
values in the Euclidean space. The subject of this paper is the optimal control of diffusions that
correspond to the heavy traffic limit of a family of multiclass networks in the HW regime.



The queueing network considered has ¢ customer classes and many exponential servers grouped
in j stations according to their type. Service to a class-i customer by a type-j server is performed at
rate depending only on ¢ and j (see Figure 1). The rate can be zero, in which case we say that type-j
servers cannot serve class-i customers. Every customer requires service only once. Scheduling of
jobs in the system is regarded as control. The cost is an expected discounted cumulative function of
performance criteria such as queue lengths, number of idle servers, or number of customers of each
class present at each station. The parameterization is such that the arrival rates and the number of
servers at each station are nearly proportional to a large parameter n, while service rates are nearly
constants as functions of n. In the case of a single class and a single type the number of servers is
subtracted from the number of customers in the system and normalized by /n. The positive and,
respectively, negative parts of this process represent the normalized queue length and number of idle
servers. In the limit as n — oo one obtains a diffusion on R with state dependent drift [10]. When
multiple classes and types are considered, the processes representing the number of customers of
each class present in the system are recentered about quantities arising from a corresponding static
fluid model. Identifying these quantities requires solving a linear program associated with a static
allocation problem studied in [12]. For motivation on the model and on this asymptotic regime see
[4] and [13].

Depending on the application, scheduling in the queueing system can be modelled as nonpre-
emptive or preemptive. Under nonpreemptive scheduling policies every customer completes service
with the server it is first assigned. Preemptive policies allow service to a customer to be stopped
and resumed at a later time, possibly in a different station, and so customers can be moved in-
stantaneously between the queue and service stations (among stations that offer service to the
corresponding class). In a Markovian queueing network one observes that the dimension of the
state space under nonpreemptive scheduling is greater than that under preemptive scheduling (cf.
Section 2), and as a result, a similar statement holds for the corresponding controlled diffusions
(even if the original queueing system is not Markovian). However, [4] shows that in the case of a
single station it is possible to associate with a nonpreemptive scheduling model a controlled dif-
fusion corresponding to a preemptive scheduling model. Thus for nonpreemptive scheduling, the
asymptotic model lies in a lower dimension than the original model. Let G denote the graph having
a node for each class, a node for each type, and an edge joining a class and a type if and only if
the corresponding rate at the queueing system is zero. Reasoning of Mandelbaum and Reiman [16]
along with the results of Harrison and Lépez [12] indicate that for general ¢+ and j a dimension
reduction as referred to above requires that the graph G be a tree (cf. Section 4). Also necessary
for this reduction is a certain condition on the static fluid model, namely the complete resource
pooling condition of [12]. Both these conditions are assumed in this paper. It was proved in [12]
that under the complete resource pooling condition a great simplification holds in the conventional
heavy traffic regime: Servers in all stations work as if they were a single server with large capac-
ity, and the diffusion becomes one dimensional. However, this condition does not lead to a one
dimensional problem in the HW regime.

A related but rather different form of cooperation between the service stations is present in



Figure 1: Parallel station system with four customer classes (buffers) and three server types (service
stations)

our setting. It is a strong form of a work conservation assumption that we refer to as joint work
conservation and regard as a constraint on the scheduling control. Under this condition, servers are
not allowed to idle when there are any customers in the queue. To maintain joint work conservation
in the queueing system and prevent servers at a station from idling when customers are present
in the queue, possibly belonging to a class that this station cannot serve, it must be possible
to appropriately rearrange customers in the stations. Considering a condition analogous to joint
work conservation in the diffusion model, one can show that this condition can be maintained,
basically because in a queueing system under preemptive policy such a rearrangement is possible
with probability approaching one as the parameter becomes large. We present an argument toward
showing that joint work conservation is in fact optimal in a class of examples where the cost is a
monotone function of the length of each queue; however, this optimality question is not the main
focus of the current paper. In fact, strong work conservation is not optimal for arbitrary cost
criteria, but it is believed that the argument can be greatly generalized, and this will be the subject
of future research. Technically, this condition simplifies the analysis in that it compactifies the
control space. It is assumed throughout.

The main result of this paper is the characterization of the diffusion control problem’s value
as the solution to the associated HJB equation, uniqueness for this partial differential equation
(PDE), and existence of optimal Markov controls. Such issues are well understood for diffusion
control problems in bounded domains, or in unbounded domains but where the cost is bounded
[5, 7]. Also, in case of unbounded domain and cost, but bounded drift coefficient, existence and
uniqueness for the PDE directly follow from [14]. The difficulty in the current model stems from
the fact that the domain, the cost and the drift coefficient are unbounded. The question then
requires deeper understanding of the model and in particular, developing estimates on moments of
the state process that are sub-exponential as a function of time. Our results cover three families
of problems. (i) Service rates are either class- or type-dependent (with general trees and costs);
(ii) Trees satisfying diam(G) < 3 (with general service rates and costs); (iii) Cost per unit time
comparable to || X ||™ where X denotes the state process and m > 1 (with general trees and service
rates).



Recent results on the HW regime include the following. Puhalskii and Reiman [19] extend
the work of Halfin and Whitt to multiple customer classes, priorities and phase-type distribution.
Mandelbaum, Massey and Reiman [17] establish functional law of large numbers and central limit
theorems for a wide class of Markovian networks in the HW regime. Armony and Maglaras [1]
model and analyze rational customers in equilibrium, and Garnett, Mandelbaum and Reiman [8]
study models with abandonments from the queue. Papers where a control theoretic approach
was taken to study queueing networks in this regime are few. The diffusion control problem
associated with scheduling jobs in a system with multiple customer classes and a single type of
servers was analyzed in Harrison and Zeevi [13]. In a similar setting, Atar, Mandelbaum and Reiman
[4] establish asymptotic optimality of scheduling policies for the queueing network derived from
the HJB equation associated with the diffusion problem. A special case where explicit, pathwise
solutions to the diffusion control problem are available appeared in [3]. Finally, with regard to the
analysis of parallel server systems in conventional heavy traffic, we mention again Harrison and
Lépez [12], where the corresponding Brownian control problem is identified and solved, Williams
[20], where a dynamic threshold scheduling policy is proposed for the queueing system, conjectured
to be asymptotically optimal, and Mandelbaum and Stolyar [18] where asymptotic optimality of a
simple scheduling policy is proved for convex delay costs.

Here is an informal description of the diffusion model identified and studied in this paper. Z and
J are index sets for classes and, respectively, types. The controlled diffusion processes X;,i € 7
represent the number of customers of class ¢ present in the system, appropriately recentered, having
initial condition z; and taking values in R. The processes Y;, i € Z and Zj, j € J represent queue
length of class ¢ and, respectively, the number of idle servers at station j. For ¢ € Z, j € J, ¥,
is a recentered version of the number of class-i customers at station j. Finally, W; are Brownian
motions representing the effect of fluctuations in arrival and service times. The dynamics are
described by equations (1)—(3). The constraint (4) comes from the definition of these processes and
the constraint (5) expresses joint work conservation.

t
X)) =+ Wilt) = Yy [ Wiilo)ds, i€z 1)
- 0
J
Z‘IfijZXz'—Yz', 1 €1, (2)
J
Y Uy=-%, jeJ, (3)
Y;>0,7; >0, iel,jeJ. (4)

> Z(t)>0 implies Z Y;(t) =0, t>0. (5)
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It is possible to encode equations (1)—(5) in a single equation of the form X (¢) = = + rW(t) +
f(f b(X(s),U(s))ds where U is a control process taking values in a compact space and W is a simple
Brownian motion. This formulation is useful, but in the introduction we only consider the form

(1)~(5).

The three cases of the main result alluded to above are treated by three different strategies.
One of our basic tools is an integral formula that expresses a relation directly between Y, Z and
W, not involving X and W. Denoting I[f = fo f and by I,, the nth power of the operator I, we
show

@i+ Wi=Y)+> Zi+ > Z Qinln(zi + Wi = Yi) + > z]: bjnlnZ; =0, (6)

i€l jeT i€Z n=1 jeT n=1
where m;, m;, a;, and b;, are positive constants. The special form this equation takes when p;;
depend only on ¢ or only on j makes it possible to get estimates on the moments of X that are
polynomial in z and ¢ in case (i) of the main result. The formula (6) may be of independent interest
since it can be seen to express a relation between the data W, the control process U and the one
dimensional process ), X; alone (cf. Section 7).

This formula is used also in case (ii) of the main result, along with a certain property of the
system (1)—(5). This property, that we call the non-idling property, should be understood as one of
the system of equations rather than the stochastic processes, as it does not regard W as a Brownian
motion:

If the system starts with x; > 0 and t — W;(t) are strictly increasing, then Zij(t)=0,€J,t>0.

For trees of diameter three or less we can show that the property holds and that it implies polynomial
moment estimates on the state process. It is conceivable that the argument proving the estimates
for trees of diameter three can be extended if this property is proved in greater generality. Since it
can be seen that if 2 and W vanish then so do X, Y and Z, heuristically the property expresses a
very weak form of the intuitively sensible statement: “the more work there is, the less the servers
are idle”. Therefore how generally the non-idling property holds appears to be a basic question on
the model, and one would like to understand it irrespective of the goals of the current work.

In case (iii) of the main result we assume that the cost per unit time is comparable to a power of
the norm of the state process X. This assumption is not the most natural in the context of queueing,
since for example cost functions depending on queue lengths cannot be treated. However, it can be
useful if one is interested in stabilizing the dynamical system about a nominal model, since the cost
penalizes deviations from the static fluid model. On the technical side, penalizing deviations from
a nominal model simplifies the problem in that moment estimates are required under one particular
control rather than under all controls, and as a result we can treat the model at full generality, as
far as the tree and the service rates are concerned.

Apart from their own contribution the results of this paper are a first step toward identifying
scheduling policies for the queueing network that are, in an appropriate sense, asymptotically



optimal [2]. As in [4], such policies can be derived from the solution to the diffusion control problem.
In addition, such asymptotic analysis would fully justify the relation between the queueing model
and the diffusion control model (1)—(5), a relation that is only obtained here by means of formal
limits.

The organization of the paper is as follows. Section 2 describes the queueing system model.
Section 3 introduces the rescaled parameters and processes. Section 4 explains how our central
assumption that the graph G is a tree is necessary for the dimensionality reduction referred to
above. Section 5 introduces the controlled diffusion and states the main result. Section 6 reduces
the problem of estimating the state process to that of estimating a one dimensional process, namely
| >; Xi|. Section 7 develops the integral formula (6) for Y and Z and establishes moment estimates
in case (i) of the main result. Section 8 studies the non-idling property for trees of diameter three
and establishes moment estimates in case (ii) of the main result. Section 9 treats case (iii) and
summarizes the estimates in all cases. Section 10 discusses optimality of joint work conservation.
Finally, in the appendix the main result is proved based on the moment estimates.

Notation.

Vectors are considered as column vectors. For a vector z let ||z|| = > |z;|. For two column
vectors v, u, v-u denotes their scalar product. The symbols e; denote the unit coordinate vectors and
e =(1,...,1). The dimension of e may change from one expression to another, and for example
e-a+te-b=73a;+ ) ;b even if a and b are of different dimension. Denote by B(m,r) the
open Euclidean ball of radius r about m. C"™*(D) [resp., C"(D)] denotes the class of functions on
D C R* for which all derivatives up to order m are Holder continuous uniformly on compact subsets
of D [resp., continuous on D]. Cpel(R") denotes the class of continuous functions f on R, satisfying
a polynomial growth condition: there are constants ¢ and 7 such that |f(z)| < c(1+ ||z|"), z € R".
Let C’gf)’la = Cpot NC™*, g})l = Cpo N C™, and let 331,+ be the class of nonnegative functions
in C). Let Ry = [0,00). If X is a process or a function on Ry, [|[X||} = supy<,<[|X(s)]|, and if
X takes real values, | X|; = supg<,<;/X(s)|. X(t) and X; are used interchangeably. For a locally
integrable function f : Ry — R denote I f = Jo f(s)ds. In case that f is vector- or matrix-valued,
If is understood elementwise. The symbol ¢ denotes a deterministic positive constant whose value
may change from line to line.

2 The parallel station model

Although the results of this paper do not address the queueing system but only the associated
diffusion processes, the stochastic model of the queueing system will be described in full detail.
The diffusion model will then be obtained from it as a formal limit.

Consider a queueing system with 7 customer classes and j service stations (see Figure 1). At
each service station there are many independent servers of the same type, in the sense that they



are statistically identical. Each customer requires service only once and can be served indifferently
by any servers at the same station, but possibly at different rates at different stations. Only some
stations can offer service to each class. When referring to the physical location of customers we say
that they are in the buffer, or in the queue if they are not being served, and we say that they are
in a certain station if they are served by a server of the corresponding type. There is one buffer
per each customer class and one station per each server type.

A complete probability space (€2, F, P) is given, supporting all stochastic processes defined
below. Expectation with respect to P is denoted by E. There are 7 customer classes and j server
types. Since the set of all classes and all types constitutes the vertex set of certain graphs introduced
below, it is convenient to label the classes as 1,... ,7 and the typesas 1+ 1,... 74+ J:

Z={1,...,4}, J={i+1,...,1+ 7}

The buffers [resp., stations] are labeled as the corresponding classes [resp., types]. For j € J let
N ]" be the number of servers at station j. Thus the total number of servers is e - N™.

Let X['(t) denote the total number of class-i customers in the system at time ¢. Let Y;"(t)
denote the number of class-i customers in the queue at time £. Let Z]’-L(t) denote the number of idle
servers in station j at time ¢. And let \IIZ(t) denote the number of class-i customers in station j
at time t. We have the vector valued processes X" = (X[")iez, Y" = (Y")iez, Z" = (Z}')jeg, and
the matrix valued process U™ = (V})iez ic7, @ X J. Straightforward relations are expressed by the

following equations:

YR+ ) UL =XP, i€l (7)
JET

ZP+ 3 W =N, jEeJ, (8)
€T

Y'(t),Z}(t) >0, i€Z,jeJ,t>0. (9)

The further constraints that X;" > 0 and W7, > 0 will turn out to be insignificant due to recentering
and rescaling applied in Section 3.

To define arrival processes, let, for each i € Z, {U;(k), k € N} be a sequence of strictly positive
i.i.d. random variables with mean EU;(1) = 1 and squared coefficient of variation

Var((v]i(l))/(EUi(1))2 = C,ZJ,Z- € [0, 00).
Assume also that the sequences are independent. Let

1
UP ) = 55 Ui ()



where A\ > 0. With 20 = 0, define
l
AP(t) =sup{l > 0: Y UP(k) <t}, t>0.
k=1

The renewal processes A} are used to model arrivals: The number of arrivals up to time ¢ is equal
to A7 (t). Note that the first class-i customer arrives at U*(1), and the time between the (k — 1)st
and kth arrival of class-i customers is U (k).

The service times are independent exponential random variables, (more general renewal model
for the service processes leads to a far more complicated diffusion limit) with mean depending on

the customer class and server type. More precisely, let S™, ¢ € 7,7 € J be Poisson processes

i
with rate uf‘j € [0,00) (where a zero rate Poisson process is the zero process). These processes
are assumed to be mutually independent, and independent of the arrival processes A}. Let T[;(t)
denote the time up to ¢ devoted to a class-i customer by a server, summed over all type-j servers.

Then t
Ti5(t) :/0 Ui(s)ds, i€Z,jeJ,t>0.

The number of service completions of class-i customers by all type-j servers by time ¢ is ST (77} (2)).

The four principal quantities in the system now satisfy the following relation, with XZQ o=
Xi'(0) :

t
XP(t) = XD+ AP(E) — > ST (/ qf;.;(s)ds>, i€ T,t>0. (10)
. 0
J

The description of the system dynamics is not complete unless full information is given on the pro-
cess ¥". In a stochastic control framework, ¥” can be regarded as a control process (as commented
below, this makes sense for preemptive policies only) and is therefore determined as the solution
to a control problem. Considering a cost of the form

"= / T e L(X(s), U (s))ds,
0

one attempts selecting W™ as the process that minimizes the cost among an appropriate family
of processes. Since characterizing optimal or nearly optimal controls for such a problem can be
very complicated, we adopt an asymptotic approach where n-dependent scaling is applied so as to
obtain a diffusion control problem in the limit.

As mentioned in the introduction, there is a major difference between the models with and
without preemption in setting up the queueing control problem. For example, in the special case
where the arrivals are Poisson, the queueing control problems become Markov decision problems,
and while the state process for the model with preemption is X", the state space for the model
without preemption must include also W". Therefore considering U™ as a control is appropriate only
for the model with preemption. However, under the assumptions of this paper queueing models
with and without preemption are both asymptotically described by the same diffusion model, as
argued in Section 4.



3 Fluid scaling and diffusion scaling

A sequence of systems as described above is considered, of which the symbol n is the index. As
first proposed by Halfin and Whitt [10], the parameters scale as follows: The arrival rates scale up
by n; the service rates of the individual servers converge; the total number of servers scales up by
n. We also assume that the proportion of number of servers in each station converges to a positive
number.

Scaling of parameters: There are constants \; € (0,00), pi; € [0,00) and vj € (0,00), i €L, j € J
such that

nil)\? — A, uznj — ij (11)

and
—1arn .
n Nj — Vj.

It may be convenient to let n be the total number of servers e- N™ in the nth system, in which case
v; sum to one, but we do not insist on this convention in this paper. while j;; stands for the limit
service rate for an individual type-j server working on class i, we need a notation also for the total
(normalized) service rate of class-i customers in station j:

Wi = Vjfbij-

As will be seen, the rates ni;; are significant in the fluid model, while j;; are meaningful in the
diffusion model.

In [11], [12] a static optimization problem is defined and studied for parallel server systems in
the conventional heavy traffic setting. The same problem plays a key role in the current setting as
well. It introduces a central assumption on the limit parameters \;, fi;; indicating that the sequence
of systems is asymptotically critically loaded (see [18] for a different formulation of this condition).

Linear program: Minimize p subject to

> hij&i =N i€L, (12)
jeT
d&i<p, e, (13)
ieT
£ij >0, i€Z,jeJ. (14)

Heavy traffic condition: There exists a unique optimal solution (£*, p*) to the linear program. More-
over, p* =1, and >, 7 & =1 forall j € J.
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In the rest of this paper, f;"j denotes the quantities from the above condition. Let also z* =
(#7,i € T), o7 = X2, &y

In a fluid model where class-i customers are served at station j at rate fi;;, the quantities
Zj 5;}-,&”’ represent the actual service rate of class-i customers when each station j allocates a
fraction fz‘j of its servers to class-i jobs. The quantities z; represent the total mass of class-i
customers in the system. The heavy traffic condition indeed asserts that the system is critically
loaded in the following sense. On one hand, equation (12) states that customers arriving at rates
A; can be processed by the system. On the other hand, under this condition it is impossible to have
a € satisfying (13) (with p < 1) and (14), and a A # X\, \; > \;, i € Z, such that (12) holds for fi, A
and f (since this would violate the uniqueness of £*). Thus, the system cannot process arrivals at
rates greater than \;.

Finer information on the scaling is as follows.

Scaling of parameters, continued: Letting \;,v; € (0,00), pij, € [0,00) be as above, there are con-
stants j\i,ﬂij eR ieZ,5 € J,such that

2N = X)) = A n1/2(u?j — ij) = fiij, (15)
nl/Q(n_lN]n —vj) = 0. (16)

Scaling of initial conditions: There are constants x;,;, z;,;; such that the deterministic initial

conditions satisfy

~

X?’n = n71/2(X?’n —nz;) = x, (17)

~

On ,_ —1/2v0,n .
e e S

A~

O,n —1/2 0,n .
Zj =n Zj — zj,
Wi = TR — ) — i,
where, due to (7), (8) and (9) one must assume y; + >, % = i, 2z + 3% = 0, y; > 0, and
% >0,i€T,jeJ.

We consider two levels of scaling for the processes involved. The processes rescaled at the fluid
level are defined as

11



The processes recentered (about their formal fluid limit) and rescaled at the diffusion level are as
follows

AP(t) =n 2(A @) = AP, SE() = n T RS (nt) — nufjt),

XP(t) = n (XD (t) - na}), (18)
Yr) =n Y0, 2 =0 P2R ), (19)

(1) = n (W — Ewm).
The relations (7), (8) and (9) take the new form

VR4 =X, el (20)

Zr+ 3 =0, jedg, (21)
7

Y2 >0, i€Ljed. (22)

Using the definitions above of the rescaled processes and the relation A = p(£*), one finds that (10)
takes the form

XP(t) = X"+ W (E) + 00t — Z m / (23)
where
r W (t) Z / (s)ds),
0 =n' (T = \) — an/Q(M?j — Hij)&ijVs-
With (15) we have Z

im ¢ = X\, — ii€hvs. 24
) :U‘] 1)7]
J

One is free to choose the values of r;, and it is convenient to choose them so that with the formal
substitution \if? =& ;jVj one has

lim B[(W7(1))?] = 1. (25)

Namely,
ri = (NCE; + N)Y2

12
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Figure 2: An example with three activities
4 Buffer-station tree

We use terminology from [12] to differentiate buffer-station pairs (i, ) € Z x J according to whether
fij > 0 (equivalently, p;; > 0) and whether &
but borrow their concepts. A pair (7,7) is said to be an activity if fi;; > 0. This notion indicates

> 0. We somewhat deviate from [12] in notation

that class-i arrivals can be processed in the fluid model by station j. If (7, j) is an activity, it is said
to be basic if {; > 0, and nonbasic otherwise. This indicates that under the allocation matrix £*,
class-i arrivals are actually processed by station j in the fluid model. To emphasize that activities
depend only on the fluid model, we sometimes refer to [basic] activities as [basic/ activities for the
fluid model. A similar notion for the prelimit model will also be useful. A pair (,75) is said to be
an activity for the queueing network if pj; > 0 for some n.

The association of buffers with stations according to activities and basic activities can be en-
coded in graphs (see [20]). Let G, be a graph with vertex set {1,2,... ,7+ 7} = I U J: A node
is associated with each buffer and a node is associated with each station. An undirected edge is
associated with each activity, namely every edge in the graph is between a buffer node (some i € 7)
and a station node (some j € J), and there is an edge between i and j if and only if (,7) is an
activity. Let Gy, be a graph having the same nodes as G, and having an edge between a node i € 7
and a node j € J if and only if (i,7) is a basic activity. Finally, we encode the activities for the
queueing network in a graph G having the same nodes as G, and Gp, and an edge between a node
i € T and a node j € J if and only if (4, 7) is an activity for the queueing network.

As stated in the introduction, we are interested in generalizing the results of [4] where the
asymptotic analysis of a queueing control problem for a system without preemption can be reduced
to that of a system with preemption. As we show in an example, if there are nonbasic activities in
the fluid model, the limit behavior is expected to be different for both. The example is explained
heuristically and cannot replace a rigorous proof, but is nevertheless convincing (the observation
and example are due to Mandelbaum and Reiman [16]).

Example 1 Consider a system with two customer classes and two server types as depicted in
Figure 2. Servers of type A can serve both classes and servers of type B can only serve class-2
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customers (in the examples we refer to stations as A, B,... rather than as numbers in J). Consider
first a case where all activities are basic. For example, let v1 = v =1, 14 = o4 = pop = 1, and
A1 = 1/2, Ay = 3/2. Then there is a unique optimal solution to the linear program: (&5 4,&54,655) =
(1/2,1/2,1). In a fluid model this means that half of the servers at station A serve class 1 and all
other servers serve class 2. In the queueing model with large n, under any policy that keeps the
deviations from the fluid model at the desired level O(y/n), the number of class-1 and the number of
class-2 customers in station A are U7 ,, U2, = n/2+ O(y/n), while the number of class-2 customers
in station B is U3, = n+ O(y/n). In a system with preemption the policy dynamically selects
the values of these processes W". In the diffusion model the control corresponds to the centered
processes, namely to the O(y/n) deviations referred to above. For a system without preemption to
be governed by the same diffusion model, it should have the property that W™ can track closely the
corresponding diffusion control process W. This means that it should be possible for the population
in any activity to change by O(y/n) in o(1) units of time. It is proved in [4] that this is indeed
possible in the case of a single station. This is also expected to be the case here, as we explain for
activity (2, A). Recall that the population in this activity is about n/2. If routing to this activity is
stopped then the population in this activity will decrease due to service completions by O(y/n) in
o(1) units of time. On the other hand, if routing to this activity is maintained and routing to the
other activities is stopped, then the population in this activity will build up by O(y/n) in o(1) units
of time. It is therefore possible to decrease or increase the population in this activity very rapidly,
and tracking a desired control process is feasible. Consider now a case where y and v are as before,
but A\; = Ay = 1. The unique solution to the linear program is now (£ 4,&54,&5) = (1,0,1), and
therefore activity (2, A) is nonbasic. The queueing model will have only O(y/n) customers in this
activity. As a result it is impossible to reduce the population in this activity in o(1) units of time.
This stands in contrast with the case where preemption is allowed and customers can be moved in
zero time between the buffer and any station that offers them service.

In view of the above example, since we are interested in problems in which nonpreemptive models
possess the relatively simple diffusion limit that preemptive models have, we shall assume that all
activities are basic.

Let now (4, j) be an activity for the queueing network but not an activity (namely p;; = 0). By
(15), pgy = pij + O(n=1/2) = O(n~1/2). If the population in (i, ;) ever gets to O(y/n) (or more),
then again one could not control it so as to change by O(y/n) in o(1) units of time, for reasons
similar to those explained in the above example.

We therefore impose the assumption that all activities for the queueing network are activities for

the fluid model.

As a result, the graphs G, G, and G, must be the same. Finally, since in cases where the graph
G is not connected the problem can be decomposed into subproblems on the components, we shall
assume that G is connected. Here is a summary of the above assumptions.
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One has G = G, = Gy, and each of these graphs is connected.
Lemma 1 Let the heavy traffic condition hold. If Gy is connected then it is a tree.

Proof: This result is due to [12]. See [20], Theorem 5.3 and Corollary 5.4. U

The condition that the graph Gy is connected is equivalent to the complete resource pooling condition
of [12]. In view of the lemma, our assumption above is equivalent to the following.

Assumption 1 The heavy traffic condition holds. The graph G is a tree. Moreover, every activity
for the queueing network is a basic activity for the fluid model, i.e., G, = G, = G.

In what follows, 7 denotes the tree 7 := G = G, = G. Write i ~ j if (4,7) is an edge of T
(equivalently, an activity) and i % j otherwise. The edge set for the tree T is denoted by

E=1{(i,j)) €T x T :in~ 7}
Note that under Assumption 1,_;;% = 0, n > 1, whenever i /¢ j. As a result, for every such (i, 7)
one has p;; = f1;; = 0 and \If?j, \I/?],\II?J = 0.

Joint work conservation

A policy is said to be work conserving if it does not allow for a server to idle while a customer
that it can serve is in the queue. In the current context one can consider a stronger condition for
preemptive policies. Recall that if preemption is allowed, customers of each class can be moved
between the queue and the various stations that offer service to them. Let ¢ be given, and recall
that the components of X™(¢) denote the number of customers of each class present in the system
at time ¢. Since t is fixed and its value will be immaterial in the following discussion, we omit it
from the notation and write e.g., X™ for X" (¢), U™ for U"(¢). In a preemptive policy, the set of
controls W™ that can be applied at time ¢ correspond to different rearrangements of the customers
X™ in the stations and buffers. Let X™ denote the set of all possible values of X™ for which there
is a rearrangement of customers with the property:

either there are no customers in the queue, or no server in the system idles. (26)

We shall say that a preemptive policy is jointly work conserving if it is work conserving and, in
addition, for every s, if X"(s) € X™ then customers are arranged according to (26).

In the heavy traffic regime considered here, it is anticipated that it is nearly always the case
that a rearrangement of customers according to (26) is possible. To explain this point, we show
that there exists a constant ¢y > 0 such that the condition

[ X" —naz™[| < con (27)
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is sufficient for the existence of a rearrangement satisfying (26) for a given X", and provided that
n is large enough. If one shows that the processes X" (t) = n~Y2(X"(t) — na*) (see (18)) are tight
(we have no such attempt in this paper; see [2]), then indeed (27) typically holds for large n. To
show that under (27) it is always possible to meet (26), the following result will be useful.

Proposition 1 Let Assumption 1 hold. Then given o;,B; € R, i € I,j € J satisfying > o; =
> B; there exists a unique solution 1;; to the set of equations

> iy =, i€L, (28)
J

> =8, jEJ, (29)
where 1; j =0 for i j.

Proof: See the appendix.

In view of Proposition 1 there is a map, denoted throughout by G : {(o,8) € R™ : Y o =
S B} = R~ 4 = G(a, B). Clearly the map is linear. By (16) one has that N = nv +o(n'/?).
To simplify the explanation, we shall ignore in the discussion below the term o(nl/ 2) and assume
that N™ = nv. One then checks by substitution that, with ) = G(nz*, N™),

Yij =n&vy, i~ (30)

Given X" satisfying (27) (with ¢p to be determined below) we now show that one can find ¥, Y
and Z" that meet U > 0, (7), (8) and (9), as well as the condition that a jointly work conserving
policy imposes, namely that e- Y™ and e - Z" are not both positive (the symbol e is used here in
different dimensions). First suppose X" is such that e- X™ > e- N™ (more customers than servers
in the system at the given time). Set Z™ = 0 and let Y" be any nonnegative vector satisfying
e-Y"=¢e- X" —e-N". Note that

IY"|=e-Y"=e-X"—e-N"=¢- (X" —nz*) < || X" — nz™|. (31)

Then by Proposition 1, the relations (7) and (8) meet upon setting ¥ = G(X™ — Y™, N"™). Also,
for i ~ 7, by linearity of the map G and by (30), (31) and (27),

\I/?] =G(X" =YY", N");
G(’I”LIII*, Nn)ij + G(Xn —nzg* =YY", O)i]’

> n&vy — (| X™ —na™|| + [[Y™])
> n&vj — 2e1 (|| X" — nz™])

> nfijj — 2¢c1comn

>0,
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where the last inequality follows from positivity of f;"jyj and an appropriate choice of the constant
¢p > 0. The case when e - X™(ty) < e- N™ can be treated analogously.

Based on the heuristic that X" are expected to be tight stochastic processes, we have argued
above that under preemptive policies it is nearly always possible to rearrange customers in the
system so as to meet (26), and thus that joint work conservation is essentially equivalent to having
(26) always hold. Under nonpreemptive policies, the definition of joint work conservation does not
even make sense, since it is impossible to rearrange customers in the system. However, since we
show that preemptive and nonpreemptive policies can be treated asymptotically under the same
diffusion model [2], one expects that, in an appropriate sense, one can nearly achieve joint work
conservation under nonpreemptive policies for large values of n. As far as the diffusion model
introduced below is concerned, there will be no difficulty associating with it a property analogous
to joint work conservation (cf. (36) below).

5 The controlled diffusion and statement of main results

We take formal limits as 7 — oo in (19)—(23). The process W™ converges to a standard Brownian
motion (cf. [4], proof of Lemma 4). Denoting the formal weak limit of (X", Y™, Z" W™ ¥") by
(X,Y,Z,W,¥), we get by (17), (24), (11) and the relation v;ju;; = fi;;:

Xi(t) =z + Wilt) = > pij /0 U;(s)ds, i€l (32)
J

where W;(t) = r;W;(t) + ¢;t, W is a standard Brownian motion, and

YUy =X-Y;, €T, (33)
J

Y Uy=-2, jeJ, (34)
Y;>0,7; >0, i€Z,jeJ. (35)

Also, the condition that joint work conservation is maintained for every n will dictate that a similar
property holds for the diffusion model, namely

e-Z(t)>0 1implies e-Y(t)=0, t>0, (36)

or equivalently,
e-Y(t) >0 implies e-Z(t) =0, t>0.

One can formulate a diffusion control problem where (32)-(36) define the dynamics and constraints,
with X the state process and ¥ the control. In such a formulation (33) and (34) define Y and Z
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and (35) and (36) give the constraints. However, a formulation in the spirit of [13] (see also [4]) is

possible, where controls lie in a compact space and in lower dimension. To this end, note that by
(33) and (34),
e-X=e'Y—e-Z

and thus by (35) and (36),
e-Y=(e-X)" e Z=( X)".

Hence Y can be represented as
Yi(t) = (e X (8) Tuit), (37)

where

Similarly,

Z;(t) = (e~ X (1) "0, (1), (38)

vi(t) >0, e-v(t)=1.
Thus consider U := (u,v) as a control process taking values in

U = {(u,v) € R : u;,v; > O,Zui = Zvj =1}
By Proposition 1 ¥ is given as ¥ = G(X — Y, —Z) hence now
U =G(X,U):=GX —(e-X)V u,—(e- X)v).
Letting £ = (¢1,... , 4y, r = diag(r;), and
b=—poG+2, (39)

we see that (32) can be written as

t
X(t) =z +rW(t) + /0 b(X (), U(s))ds.

Admissible systems and controlled processes

Definition 1 i. A complete filtered probability space is a complete probability space (2, F, P),
equipped with a right continuous filtration (Fy)icr, of sub-o-fields of F', such that Fy contains all
P-null sets of F. A stochastic process X on (2, F, P) is adapted to a filtration (F}), if for each
t >0, X; is Fy-measurable. A stochastic process U is Fy-progressively measurable if for each t > 0,
the mapping (s,w) — Us(w) is B([0,t]) ® F;-measurable, where B([0,t]) is the Borel sigma-field on
0, t].

i. We call
’/T:(QaFa(Ft)aPaUaW)

an admissible system if
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1. (2 F,(Fy), P) is a complete filtered probability space,
2. U is a U-valued, F-measurable, (F;)-progressively measurable process, and W is a standard
i-dimensional (F;)-Brownian motion.

The process U 1is said to be a control associated with .
iii. We say that X is a controlled process associated with initial data x € R* and an admissible
system ™ = (Q, F, (F;), P,U,W), if

1. X is a continuous process on (Q, F, P), F-measurable, (F})-adapted,

2. f[f |b(X (s),U(s))|ds < oo for every t >0, P-a.s.,

3.
t
X(t)=x+rW(t) + / b(X(s),U(s))ds, 0<t< oo, (40)
0

holds P-a.s.

The proposition below shows that there is a unique controlled process X associated with any x
and w. With an abuse of notation we sometimes denote the dependence on z and m by writing PJ
in place of P and E7 in place of E. Denote by II the class of all admissible systems.

Proposition 2 Let initial data x € R* and an admissible system m € II be given. Then there exists
a controlled process X associated with © and w. Moreover, if X and X are controlled processes

associated with © and w, then X (t) = X (t), t > 0, P-a.s.

Proof: Note that (z,U) — b(z,U) is continuous and = — b(z,U) is Lipschitz uniformly in U.
Consider b,,, a function that agrees with b on the ball B(0,m), uniformly Lipschitz and bounded.
Then strong existence and uniqueness for

X () = 2 + rW (1) + /t b (Xon(5), U(s))ds, 0 <t< o0
0

holds by Theorem I.1.1 of [5]. Since || X, (¢)|| < |lz||+c||W ()] +c¢ f(f | X (8)||ds, one has || X, (8)|| <
(lz|l + W} (1 + e) by Gronwall’s lemma. Thus letting 7,,, = inf{t : || X,;,(t)|| > m}, one has
Tm — 00 a.s. Therefore X (t) = lim,, X,,(¢) for all ¢ defines a process that solves the equation (a
strong solution). If X and X are both strong solutions, then for every m they both agree with X,
on [0, 7,,]. Therefore they agree on [0,00) a.s. U

Control problem and HJB equation

19



Let a constant v > 0 and a function L be given and consider the cost
0 —
C(z,m) = E;f/ e "L(X(t),U(t))dt, =R, rell
0
Our assumption on L is as follows.

Assumption 2 i. L(z,U) >0, (z,U) € R* x U.

ii. The mapping (x,U) — L(z,U) is continuous.

iii. There is o € (0,1) such that for any compact A C R,
|L(z,U) = L(y,U)| < cllz =yl

holds for U € U and x,y € A, where ¢ depends only on A.

iv. There are constants ¢ > 0 and myg > 1 such that L(z,U) < ¢(1 + ||z||"*), U € U, z € R".

Define the value function as
V(z) = inIfI C(z, ).

T
The HJB equation for the problem is (cf. [7])
Lf+H(x,Df)—~f =0, (41)
where £ = (1/2) Y, r20?/0x2, and
H(w,p) = nf [o(w, U) - p + L, D).

The equation is considered on R’ with the growth condition

AC,m, |f(@)| < CA+][z|™), zeR. (42)
We say that f is a solution to (41) if it is of class C2, and the equation is satisfied everywhere in

R™.

Definition 2 Let x € R® be given. We say that a measurable function h : R® — U is a Markov
control policy if there is an admissible system w and a controlled process X corresponding to x
and 7, such that Us = h(X;), s > 0, P-a.s. We say that an admissible system m is optimal for
x, if V(z) = C(x, 7). We say that a Markov control policy is optimal for x if the corresponding
admissible system is.

Our main result is the following.
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Theorem 1 Let Assumptions 1 and 2 hold. In addition, let one of the following conditions hold.
i. For (i,5) € €, pij depends only on i; or for (i,7) € &, pij depends only on j.
1. The tree T is of diameter 3 at most.

iii. There are ¢,C > 0 such that L(x,U) > c||z||™F for oll ||z|| > C and all U € U (where my, is as
in Assumption 2).

Then there exists a classical non_negative solution f € ngﬁ(Ri) to (41) (422 In cases (i) and (ii)
this solution is unique in CSOI(RZ) and in case (iii) it is unique in Cgol,_i_(Rl). Moreover, the value

V is equal to f. Furthermore, there exists a Markov control policy that is optimal for all x € R

Deterministic setting

Equations (32), (33) and (34) can be considered in a deterministic setting. Use w in place of
z + W (where as in (32) x is the initial condition for X), and & = z(t) [resp., y, 2, ] in place of
X [resp., Y, Z, U]

t
zit) = wit) = 3 iy /0 Yijls)ds, i€T, (43)
J
> hij=wi—yi €T, (44)
J

> hij=—z, jEUT, (45)

where p;; and 1;; vanish whenever i £ j (a convention that holds throughout). The constraints
(35), (36) now have the form

yz'aszU, i617j€j7 (46)

> yi(t) > 0 implies Y z;(t) =0, t>0. (47)
i J

A key step in the proof will be to show that (43)—(47) imply a uniform estimate on the state, of

the following form:

lelly < e(t+6)™ 1+ [lwlly), (48)

where ¢, m do not depend on ¢, w,y, z,9. This estimate, that we establish in the first two cases
of Theorem 1, depends on both parts of Assumption 1: the heavy traffic condition and the tree
structure. Thus we end this section with two counterexamples to (48), one where the uniqueness
assumption that is a part of the heavy traffic condition does not hold, and one where the heavy
traffic condition holds, but a nonbasic activity is used.
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Example 2 Consider a two-class two-type system where at station A there are twice as many
servers as in station B, and where each server in station B works twice as fast as each server in
station A: v4 = 2,up = 1, 14 = poa = 1, p1p = pep = 2. Then ji14 = fioa = jlip = Ji2B = 2,
and with Ay = A9 = 2 it is easily seen that there are many optimal solutions to the linear program

(12)—(14). For example, both
10 0 1
=(ov) = (i)

are solutions. To show that (48) does not hold, consider w = 0 and note that (43) has the form:

T1 = =14 — 2991B, L2 = —thoa — 21Y2p.

Let 914 = —tpoa = k and let 11p = —1pop = —k(1 +e7?")/2. One checks that (43)-(47) are
satisfied with 21 = —29 = k(1 — e 2!)/2, y = 0, z = 0, for any k > 0. Since k is arbitrary, (48)
cannot hold.

Example 3 Consider a two-class two-type system as follows. vy = vp = 1, A = (1.5,1.5)" and
p1a = 3,1 = 1,24 = 1 and pop = 1. Then the heavy traffic condition holds with &, = 0.5,
&p =0, &4 = 0.5 and &z = 1. Taking w = 0, one checks that ¢14(t) = —k, P1p(t) = k,
oa(t) =k, Pap(t) = —k with z1(t) = y1(t) = 2kt, z2(t) = y2(t) = 0 and z4 = zp = 0, satisfy all
of (43)-(47) for any k£ > 0. Thus (48) does not hold.

6 Estimating the state X in terms of e- X

While the relation ||[Y (¢)]| + ||Z(t)]| < ¢||X(¢)| is immediate from (37), (38), the following result
shows that in a weaker sense Y, Z and z + W dominate X (or in the deterministic notation, y, z
and w dominate z). The result only uses the relations (43)-(45) and not the further constraints
(46), (47).

Proposition 3 Let equations (43)—(45) hold. Then there is a constant cy not depending on
v, w,x,y,z ort, such that

Hplle + 12l < colllwlly +WITylle + [12[l7), ¢ >0,
where |||} = Zz’j [ Iepijl7 -

Note that if, in addition, (46) and (47) are assumed, then ||[Ty||} = I(e- z)"(t) and ||Iz|} =
I(e-x)~(t). As a result of Proposition 3, the state z is dominated by w and e - z in the sense

lzlly < collwlly + Ile - |()).
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Lemma 2 Let w be a measurable, locally bounded function and assume x = w — fo z(s)ds. Then

t
z(t) = w(t) — p /0 w(s)e M=) ds, (49)

and in particular, if u > 0 then |z(t)| < 2w}, t > 0.

Proof: : Uniqueness of solutions z follows from Gronwall’s lemma [6], and (49) is verified by
substitution. U

Proof of Proposition 3: A node in a tree is said to be a leaf if there is exactly one edge joining
it. Recall that the tree 7 has kK = 7+ j nodes and K — 1 edges. Let 71,72...,7Tx—1 = T be an
increasing sequence of trees as follows. Forn = 1,... ,k —2, T, is obtained from 7,4 by deleting a
leaf and the edge joining it. Note that 77 has exactly two nodes, one in Z, one in J. Let V,, denote
the vertex set of 7. Let vy 41 = V41 \ Vi denote the node in V,, ;1 that does not belong to V.

Denote Z, =Z NV, and J, = J NV,,. We shall show that forn=1,... ,x — 1, if

Ti = w; — Z pijlig, L €1y, (50)
§ETn

Zd)ij:xi+ai, i € Iy,

JETn

> i =B, J € In,

i€T,

then
Yo Myli + Y Jwili < e | D (wily + 1 aal) + Y 115515 | - (51)
1€Tn,jE€EITn €Ty 1€y JEIn
The implication (50)=-(51) is proved by induction on 7.

Induction base: n = 1. Ty has exactly two nodes, say i € Z and j € J. By (50), z; = w; — pijI1;;
and Iv;; = I3;. Hence (51) holds.

Induction step: Assume that (50)=-(51) holds for n € [1,x — 2]. Let (50) hold for n + 1. We show
that (51) holds for n + 1 in the two cases.
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Case 1: The leaf node v,41 s in Z. Denote ig = v,41 and let jo denote the unique node j ~ ig in
Tn+1- The validity of (50) for n + 1 implies the following regarding i € Z,,, j € Jp:

wp=wi — Y pigIg, i € In, (52)
JETn

> iy = i+ o, i € I,

GETn

> i =B, j € Tu\ {do},

i€T,

Z Yijo = Bjo — Yiojos

i€Tn

and the following regarding the node %:
Ly = Wiy — lj'ioonz/)iojoa (53)
Yigjo = Tig + Qi

By (52) and the induction assumption,

Do il + Y Jwili < | D0 (wili + Haaly) + 0 B+ [Tdiogoli |- (54)
1€1n,J€ETn 1€, 1€, JE€EIn
By (53),
Tig = Wiy — ,uinOIOéiO — /J,inOIZEiO. (55)

Applying Lemma 2 to (55) and using again (53) shows
[Zio ()] + Hhigjo ()] < el|wig|7 + iy [7)- (56)
Combining (54) and (56) establishes the validity of (51) for n + 1.

Case 2: The leaf node vpy1 is in J. Denote jo = vyy1 and let 79 denote the unique node ¢ ~ jp in
Tn+1. Assuming (50) for n + 1 implies

zi=wi— Y i, i € In \ {io}, (57)
JETn
Z 7,/)1']' = x; + oy, ’iEIn\{’io},
JETn
Tig = (Wiy — Miojo [ Pigjo) — Z Wioj L ioj)
JETn
D" ios = Tip + (ip — Pigjo),
JETn
Z Yi; = Bj, J € Tn,
i€T,
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and
Piojo = Bjo- (58)
By (57) and the induction assumption, (54) follows. Combining (54) with (58) gives (51) for n+ 1.

This completes the proof that (50) implies (51) for n € [1,x — 1]. The result follows on taking
n = k — 1 and substituting o = —y and § = —=z. L]

7 An integral formula for ¥ and Z

Equations (43)-(45) were used in the previous section as substitutes for (32)—(34). They express a
relation between the quantities z,y, z, w and . In this section we extract a relation between y, z
and w alone. This relation, in the form of an integral equation, is a key element in treating parts
(i) and (ii) of Theorem 1.

For o« € R denote
Tof =f+alf.

Lemma 2 shows that Ty, is invertible. It is easy to see the operators Ty, T commute. If A =
(a1,... ,a4) is a finite real-valued sequence, denote

Th=Ty 0---0T,,.

Then T4 does not depend on the order of the elements of A, but it depends on the multiplicity
of each element. Let () stand for the empty sequence and set Tj as the identity map. Equations
(43)—(45) imply

> Tyt =wi —yi, €T, (59)
J

S iy =—z, jeJ. (60)

Theorem 2 Let (59) and (60) hold.

i. y and z solve the following integral equation

D Ta(wi—yi)+ Y Trz =0, (61)

1€ JjET

where A; and Bj are finite (possibly empty) sequences with values in {p;; : (i,7) € £}.
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i. In the special case where p;; = pj for (i,5) € £ equation (61) takes the form:

Z(wi —yi) + Z Ty;2; = 0. (62)

i€l JjeT

iii. In the special case where p;; = p; for (i,5) € € equation (61) takes the form:
> T, (wi — yi) + Tar(e - 2) =0, (63)
€T

where M = (pi)irez iz, M = (pir)irez-

Remark 1 (a) Writing I,, for the n-power I o...oI of the operator I, it is useful to note that the
integral equation (61) can be written as

m; mj
e-w—e-y+e-z+22ai,nln(wi—yi)—i-Zij,nInzj =0. (64)

icZ n=1 JET n=1
Here, m;, mj, a;pn,b;, are positive constants that we do not give in explicit form.

(b) Recall that under (46) and (47) one has y = (e-z)*w and z = (e - x) v. As a result, (64)
expresses a relation between the data w, the controls u and v, and the quantity e - x alone.

We need some notation regarding the tree 7 to be used in this and the following sections. Fix
one of the class nodes, ig, as a root. (Analogous notation applies if we fix a station node, some 7
as a root). For kK =0,1,..., let level k, denoted by [; be the set of nodes of 7 at distance &k from
the root iy along the edges of 7 (see Figure 3). Note that lp = {iyp} and that I is empty for all k
large. Let also

Ly =1IlgUly...Ulg

be the set of nodes at distance at most k from the root, and
Li=L,NZ, Ly =Ly,nJ.

Note that the elements of L [resp., ij | are at even [resp., odd] distance from the root, not
exceeding k. Let K be the largest k such that [; is nonempty. For a node v at level k let B(v) (B
for ‘below’) be the set of nodes v' ~ v at level £+ 1. For a node v at level k € [1, K] let a(v) (a for
‘above’) be the unique node v' ~ v at level k — 1.

Proof of Theorem 2: Part i. We show the following. For k£ > 1 one has

> Tuslwi—y)+ Y Tprzj + Y Testiay =0 (65)
iell, jELY i€lay

where AF, B]’-“, CF are (possibly empty) sequences with values in {u;; : (i,5) € £}, and summation
over an empty set is regarded as zero. Part (i) will follow on taking k larger than K.
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level O (root) 0 buffer

level 1 station

level 2 buffer

level 3 station

level 4 buffer
i £ B(j)

Figure 3: Buffer-station tree

We prove (65) by induction on k.

Induction base: k = 1. By (59),
> Ty iog = Wig — Yio,
Jjeh
and by (60)
bioj = =2 — »_ijs J €.

iE€l2
It follows that

Wiy — Yig + Z Tllioj z] + Z Tuioa(i)/l’/)ia(i) = 0’
jElL i€ly

and (65) holds.

Induction step: Assume that (65) holds for k. Using (59) and then (60), for ¢ € Iy and j = a(4)
one has

Tpij =— O T iy + wi— i
j'€B(i)
= E Ty 20 + E Ty iy ¢+ wi = yi-
J'E€laky1 i'Elag 42

Apply Tr on the above equation (where still ¢ € 5, and j = a()) to get

TesTuybis = Y, TexTuzin+ D TosThy o Piratiry + Tos (wi — yi). (66)

J'€lagy1 V€l

Let Di = (Kia(i))icly,- APPly T, to (65) and use (66) to substitute for each summand in the third
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sum in (65) to get

0= Z TDkTAf(wi_yi)"" Z TDkTB]’?Zj

i€l JELY
+ 208 > TopgunTug Terzi + D Tog g T, Tosua) + Topfusyy Tor (wi = i)
i€lag | J'El2k+1 ' Elagyo

where Dy \ {11} denotes a sequence obtained from Dy, by deleting from it one element of value p.
This proves that (65) holds for £ + 1 and completes the proof of Part i.

Part ii. In case that p;; = p4, by (59) and (60),

> Typiy =wi—yi, €T
J

ZTujz/)ij:_Tszj? jEJa
i
hence

Z(wi — yi) + ZTWZJ' =0.
J

(2
Part iii. In case that p;; = ;, by (59) and (60),

Ty Y i =wi—yi, €T, (67)
J

> dhij=—z, jEJ. (68)

2

The result follows on applying [, ; Ty, on (67) and [, 7 Tp, on (68). L

i’

Proposition 4 Let (59) and (60) hold. Assume also

e-z(t) >0 implies e-y(t)=0, ¢>0. (70)
In cases (ii) and (iii) of Theorem 2 there are constants ¢,m > 0 such that

[y + 1z < et + )" [Jwllz, ¢ > 0. (71)
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Proof: In the case y;; = pj, (62) can be written as

e-w—e-y—i—e-z—i—ZujIzj:O.
J

By (69), z; are positive and therefore
eew—e-y+e-z<0.

Thus by (70)
0<e-z<(—e-w)T,

and therefore

eew<e-y—e-z<e w+tle wl.

Since by (70)
Iyl + 11zl = le-y —e- 2,

(71) follows.

In the case p;; = p;, applying Tu_il to (67) and by (68) (or by applying T];[l to (63)) we have
ZT?(wi —yi)+e-z=0,
i
hence by Lemma 2 and positivity of v;,

t
e-w—e-yt+e-z= Zuz/ (wi(s) — yi(s))e ™) ds < ct|wl|}.
- 0
)

By positivity of z; and (70) we therefore have
lz@) || < (1 +B)fJw][;. (72)

By equation (64), the positivity of its coefficients and of y;, and (72), there are constants ¢,m > 0
such that

ly@) < (X 4 )™ wll;- (73)
Combining (72) and (73) establishes (71). O

By Propositions 3 and 4 we have the following.

Corollary 1 Under the assumptions of Theorem 1(i), for any mi > 1, any initial condition z € R
and any admissible system m € 11,

EZIX@™ <e(t+flz[)™ (M +8)™, ¢ =0,

where ¢ and m do not depend on x,,t.
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8 The non-idling property

As in the previous section, the following relations follow from (43)-(45):

> Wi + piIpig) = wi —yi, €L, (74)

J

Zdh’j =-zj, j€J. (75)

The constraints (46) and (47) were as follows:

yiaZjZO, iEI,jEJ, (76)

> yilt) > 0 implies Y z;(t) =0, t>0. (77)

J

Note that z (cf. equation (43)) is not a part of this system of equations, but can be obtained from
it via

mi=wi — > il
J

We say that the system (74)—(77) incurs no idleness on [0,T] (compare with [20]) if 2;(¢) = 0 for
tefo,1],jeJ.

The non-idling property: If the system starts with w;(0) > 0 and w;, @ € I, are strictly increasing
on [0,T], then the system incurs no idleness on [0,T].

This section investigates a relation between the non-idling property and the uniform estimate
s < e(1+ )™ [Jwl[f, (78)

where ¢, m do not depend on ¢, w, y, z, 1. In particular, using the integral equation developed in the
previous section, it shows that for trees of diameter not exceeding 3 the non-idling property implies
the uniform estimate. A relatively simple argument then shows that the non-idling property holds
for such trees, and the estimate follows.

A tree T of diameter 3 has the form depicted in Figure 4, where there are only two nodes ig € 7
and jp € J that are not leaves.

Theorem 3 Let Assumption 1 hold and assume the diameter of the tree T is 3. Then the non-
idling property implies the estimate (78), where ¢,m do not depend on t, w,y, z, .
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buffer
lo

Figure 4: Tree of diameter 3

Lemma 3 Let the assumptions of Theorem 8 hold. FizT > 0 and let (v, y, z,w) be given, satisfying
(74)—(77) on [0,T]. Let bounded measurable functions f; > 0, i € T be given. Then there is a
constant cqg that does not depend on T, f;, 1, y,z or w, and there exist (1/3,3),2,12)) defined on [0,T],
satisfying (74)—(77) and moreover

e-y>e-y, e-z2<e-z, (79)
and
Wi = w; + fi +ni, (80)

where n; are nondecreasing and 0 < n; < coT Y |fi|ly on [0,T].

Proof: It suffices to prove the lemma in the case where all but one of the functions f; vanish, since
the argument can then be repeated. Consider first the case where f; vanish for all 7 # iy (and
fio > 0). Define w; = w;, §; = yi, 1/3” = 1jj, for i # ip. Define now 1/32-0]- and Z; as follows. For
te®:={sec0,T]:e-2(s) > fi(s)}, let j =041, let Aj:=z; A f;), and set 1/32-0]- = Yio; + A,
Zj = zj—Aj. Similarly, for j € (142, i+7], let Aj = Zj/\(in—AZq_l—' . -—A]’_l), and J)ioj = ;o T4,
Z; = zj — Aj. This ensures that, for all j, Z; > 0 and (75) is satisfied by the hat system, and, with
6(t) =0,

D g (8) =Y higi () + fio(t) — 6(b). (81)
j j

For t € ©°, set z; = 0 and 1/32-03- = 1;y; + Aj where now A; = z;, j € J. Then again (75) holds for
the hat system. Also (81) holds with &(¢) = fi,(t) —e-z(t) > 0. Now that ¢ is defined on [0, T7, let

Wip = Wig + > (Pigj — Pigj + Hiojl (Pioj — Pioj)) + 9,
i

and ¢, = vi, + 0. Then (74) holds on [0,7]. By (81), w;, = wi, + fi, + Miy, where n;;, =
> thioi T (ioj — Pig)- Since 0 < thioi —ioj < fio by construction, the properties of n;, stated in the
lemma hold. Inequalities (79) also hold by construction. Condition (77) holds for the hat system
since on O, § = y and the set of times where e - z vanishes is a subset of that where e - 2 vanishes;
and on ©F¢ e- Z = 0.

Next consider the case where for some i; # ip, f; = 0 on [0,T] for all ¢ # i;. The argument
is similar, but slightly more complicated because i1 % 7 for most j. We only indicate where the
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argument changes. The definition of 1/A;Z-j and z; differs as follows. Z; is defined as before, where i
is replaced by i;. Recall that in the previous case, 1,/; is defined as 1/3 =1 + A. In the current case,

let iyjo = irjo + 225 Ajs Yigj = ios + A for j # jo, and tigjo = Yigjo — Dj5, Aj- Set
Wiy = Wiy + Pirjo = Pirjo + tirgol (VYirjo — Pirjo)) + 6,
Wiy = Wi + Y igi (Pigj — Pics)-
J#Jo
Let 9;, be defined analogously to the way ¢;, is defined in the previous case, and let §; = y; for
all 7 # 4. One checks that all properties (74)—(77) are satisfied by the hat system, and that the
conclusions of the lemma all hold, except that w;, = w;, + fi, + 7i, where there is no guarantee
that 7;, is nondecreasing (in fact, we have assumed without loss that f;, = 0). But this is now

corrected by applying a further modification as in the previous paragraph, where now one takes
fio =1;, and f; = 0 for all 7 # . .

Proof of Theorem 3: Fix T > 0 and let (¢,y, z,w) be given, satisfying (74)—(77) on [0,T]. Let
fi be defined on [0, 7] as

fi(t) = max(0, UEI;ET’U)Z'(S)) —w;(t) +t/T =: ¢; —w;(t) +t/T.

Let (z/A), ¥, Z,w) be as in the conclusion of the lemma. Then w; = ¢; + ¢t/T + n;, thus w;(0) > 0 and
w; is strictly increasing on [0,7]. Therefore by the non-idling property, 2; = 0 on [0,T], j € J.
Hence by (61) and non-negativity of y;,

D 9 <Y Tagih;
i i
<c(l+1)™Y iy,
i
where the last inequality uses the non-negativity of the coefficients of the integral operators T'4;.

Using (79) and (80),

e-y(t) <c(L+6)™> (ci+m(T)) < e(l + )" T||wllf.

i
Thus on [0,77],
ey < e(1+T)™lwll7.

Using again (61), now on w,y, z and equipped with the bound on y,

ez < 3 T, (s —wi) < o1+ )™ [wl
i

As a result,
lylly + lIzll7 < e(1 + )™ |wllT,

where ¢, my do not depend on T'. The result now follows from Proposition 3. L]
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Lemma 4 Let the assumptions of Theorem 3 hold. Let w; be continuous functions. Then the
non-idling property holds.

Proof: It is more convenient here to work with the equivalent set of equations (43)-(45). For
i # io, by (43), T = wi — pij [y Yijo(s)ds, and by (44), ij, = =i — y; < x;. Hence z; > &;, where
& solves & = w; — fijo fo ¢i(s)ds. By Lemma 2 and since w;(0) > 0, and w; is nondecreasing, one
has & > 0. As a result, 2; > 0.

Recall that e-z = (e-z)” and let 7 = inf{t : e- 2(t) > 0} = inf{¢ : e- z(t) < 0}. Arguing by
contradiction, assume that 7 < T'. Since w is continuous, so is z, and since e-w(0) > 0, 7 > 0. On
[0,7), ij, = zj, = 0. Hence by the argument in the previous paragraph, applied for z;,, using the
fact that w is strictly increasing, one has z;,(7) > 0. Thus by the result of the previous paragraph,
e - x(r) > 0. However, by the definition of 7 and the continuity of e -z at 7, e- z(7) < 0, a
contradiction. As a result, e-z > 0 on [0,7), and by continuity of e - z, the same holds on [0, T].
Therefore e - z = 0, and by (76) z;(t) =0 for s € Z and ¢ € [0,T]. O

All results of this section remain valid for trees of diameter 2, as follows on applying them for
trees of diameter 3 and choosing p;; = 0 for appropriate (4,5) (nowhere in this section have we
used the condition that p;; > 0 for every (4,7) that is an edge of T).

Theorem 3 and Lemma 4 imply the following.

Corollary 2 Under the assumptions of Theorem 1(ii), for any my > 1, any initial condition z € R?
and any admissible system w € 11,

EZIX@N™ <e(t+lz)™ (1 +8)™, ¢=0,

where ¢ and m do not depend on w,x,t.

9 Case where cost is bounded below and summary of estimates

This section treats part (iii) of Theorem 1. First it shows that there exists an admissible system
mp under which the state process satisfies a polynomial growth condition in time. Then it is shown
that one can consider a subset of II of admissible systems that, in a sense, ‘switch’ to mg after some
time, without loosing optimality. The estimates for my then remain valid in the ‘switched’ systems.

Proposition 5 Let Assumption 1 hold and consider the system (43)—(45). Fiz ig € T and jo ~ ip
and let y = (e~ x)Tu, z = (e- x) v, where u(t) = e;, and v(t) = ej, for all t. Then the estimate
lz(@®)|| < e(l+8)™|w||; holds, where ¢ and m do not depend on w,t.
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Proof: Let iy be the root. Then jy € B(ip). It suffices to show that for £ =0,1,..., if i € Iy, and
J € log41 then
()i (O ia) @B, [2:(8)] < ex(L + )™ w7

This claim is proved by backward induction on k.

Induction base: k is the smallest number n such that I, 12 = (0. If o1 is not empty, let j € log 1.
Then by (45), 9,j); = —#j = 0. Let i € ly. For j € B(i), 1jj = 0. Let j = a(é). Then by
(43), z; = w; — pijl;; and by (44) and the assumptions, ¢;; = x; —y; = x;. Thus z; solves
x; = w; — pijlz; and by Lemma, 2, |z;|, || < c|w;|*.

Induction step: Assuming the claim holds for £+ 1 we show that it holds for k. Let 5 € logy1, 7 # Jo-
Then by (45) and the assumption, 9,;); = _ZieB(j) tij. Thus by the induction assumption
[Pa(jyil < c(14+8)" lw||*. Let i € lox, i # 9. Then by (43), (44), the bound on ¢;;, j € B(i), just
obtained, and the induction assumption,

zi(t) = g(t) — Nz’a(z‘)IfEi (t),

where |g(t)| < ¢(14t)™||lw||f with some constants ¢, m. Hence by Lemma 2, |z;(t)| < c(1+¢)™||w];.
By (44) and the induction assumption, a similar bound then holds for |t;,; |-

Consider now iy and jo. Write zo for z;y, 1o for 1 j, and po for p;yj,. By (43)—(45) and the
induction assumption, we have:

zo = g1 — polo,
o + 92 = xo — Yo,

1/)0 = —20,

where [g;(t)| < ¢(1 + ¢)™||w||; and ¢, m are some constants independent of ¢,w. Then 1y < 0 and
therefore zp > g1. Moreover, if yo(t) = 0 then 1o (t) > zo(t) — g2(t) > g1(t) — g2(t); and if yo(¢) > 0
then yo(t) < e-y(t) = e-z(t), and ho(t) > zo(t) — e~ z(t) — g2(t) = — 3,4, zi(t) — g2(t). By the
induction assumption thus 1o (t) > —c(1+¢)"||w||; holds for all ¢, with ¢, m some constants. Finally,
|zo(t)] < |g1(t)| + pot|tbo|f, and therefore a similar bound holds for z¢ as well. This completes the
proof by induction. ]

Throughout the rest of this section let ig and jy ~ ¢ be fixed. The following result shows that
it suffices to consider only a certain subset of the set of admissible systems having the following
property: There is a stopping time 6 on the filtration associated with 7, such that on {f < oo},
u(t) = e;, and v(t) = ej, for all £ > 0.

Recall that on a given admissible system m, for every initial data = there is a corresponding
controlled process (by Proposition 2).

Proposition 6 Let the assumptions of Theorem 1(iii) hold. Let x € R® be given. Then there is a
set of admissible systems I C I such that
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1. For every mi > 1,
EZIX@)™ < (1 +8)™,

where ¢ and m depend on x, ™ and my but not on t; and
i. V(z) = V(z), where

f/'(x) = inf C(z, ).
mell

Proof: For any 7 € II and any stopping time 6 on 7 let 7? be the admissible system obtained from
7 by setting u(t) = e;, and v(t) = ej, for t > 6. Given z and = € II such that C(z,7) < oo and for
e >0 let

o = inf{t: EJ /too e PL(X(s),U(s))ds < e}, (82)
and define the stopping time
0. = inf{t >o.: | X()|| > '} (83)
Note that o, and 6, depend on x and 7. Note also that
0. > 0. — 00, ase—D0. (84)

For short, write 7° for 7% . Define

II={r":mell,e € (0,1)}.

For Part (i), let 7 € Il and € be given. Then on 7, and on the event {f: = 0o}, sup,cp,o0) [[X (s)]| <
elv |1 X||5.. Moreover, by Proposition 5, on the event {. < oo}, for t > o,

IX@N < et +1—o0e)™ (XI5, + Sup W (u) = W (oo)]))
uc|oe,

Recall that W is a Brownian motion starting from the origin, and with constant drift. Hence
EZ (supycro. 4 W (uw) =W (6,)]]) < e(1+t—0.)" for some mg independent of & and ¢, and the same
holds for expectation under ET . Hence it suffices to prove that ET [(||X || )™ ] = ET[(| X ||z.)™] <

oo. This follows from an easy application of Gronwall’s lemma, using the fact that  — b(z,U) is
Lipschitz uniformly in (z,U). Part (i) follows.
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By Assumption 2(iv) and Proposition 5,
- [ee]
Eg[uﬁwi/ e L(X (1), U(8))de]
1> ) w ~ ~
Sdﬂukm/ (L4t — 0.)™(L+ X (0| + Wy — Wi, )™ d]

o
< 0/ e (1+ 1) dt Bf [lg.<ooe™ " (1 + [|X(6:)|)™*]
0
oo

+ BT [1g, <0 / e 4t — 6.)™|W; — Wy ||) ™ dt]

€

= CE] (1, <oo (1 + | X (02) )™ 7] + ag(e)
= a1 (e) + as(e), (85)
where ¢ does not depend on ¢, and as converges to zero as € — 0.

Next we show that ay(e) — 0 as € — 0. Below, we sometimes write 6 for .. By definition of
b (see (39)), ||b(z,U)]| < c(1+ ||z||), and ||b(z,U) — b(y,U)|| < cl|lz — y||, where ¢ does not depend
on z, y and U. Thus by (40), for any ¢ > 6, one has on the event {f < oo}

t
1X(#) = X (0)|| < c[|W(t) = W) + 0/0 [b(X(8),U(s)) + (b(X(s),U(s)) = b(X(6),U(s)))]ds
t
< c[W(t) = WO + et = 0)(1 + [[XO)]) + 0/0 (X(s) — X(0))ds.

Hence by Gronwall’s lemma

1X(#) = X (0)]| < ¢ sup W (s) = WOt = 0)(1+ IX(B)[1)e ", (86)

where ¢ is a deterministic constant not depending on t. Let 7 be the stopping time defined as
7 =1inf{t > 0 : | X(t)]| < [|X(0)]|/2} (and T = oo on the event {§ = co}). By (83), || X(0)] > !.
Hence by (86), on {# < oo},

P(r—0<e?|Fy) <P( sup |X(1) = X(O)| > (L+ X (0)])/3]Fp)

te[h,0+1/2]
< Plce' e sup  |W(s) — W(0)| > 1/3|Fp)
s€[0,0+e1/2]
< cell? (87)
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for all € < 1, where ¢ does not depend on . Denote 3. = 7. A[f. +¢'/?]. Then by (82), (83), (87),
and using the lower bound on L(z,U), for all € small,

£2 Billocos | ¢ LX) V()

Be
> BTy, oo /6 (1 + [ X (s)l])™ ds]

> cE7 [Lg. <oo(1 + (1/2)[1X (8:) )™ 77" (B2 — 6.)]
> cE7 {1, <oo(1+ (1/2)| X (0:) )" e e 2P (1. — 0. > €'/ Fy.]}
> ce'PE7 {1, coo (1 + | X (0:) )" e 7},

where ¢ > 0 does not depend on e. As a result, a;(e) — 0 as e — 0. Thus by (85), for every w € II
and ¢ € (0,1) there is 7° € II such that

Cla,7) < Clar,m) + ale), (58)
and o(e) = o (e) + az(e) — 0 as e — 0. Hence V(z) < V(z), and Part (ii) of the result follows. [

Here is a summary of our estimates in the three cases of Theorem 1.

Proposition 7 Let the assumptions of Theorem 1 hold. In all cases (i)-(iii) of Theorem 1, for
any z and any admissible system = € I (r € 11 in case (iii)), the following holds.

1. For every my > 1,
EZ|IX@®™ <c(1+t™), t>0,

where the constants ¢ and m do not depend on t (but may depend on x, ™ and mq).

ii. There are constants c¢,m not depending on z such that V(z) < c(1 + [|z||)™.

iii. V is continuous on R'.

. Let D C R" be a smooth domain. Let g(t,z) = e "'V (z), (t,z) € Ry x OD. Then V. =Vp 4 in
D, where Vp g = infren Cp g(x, ),

Cpy(,7) = BT / e L(X,, Uy)dt + g(r, X,)],
0

and T = inf{t : X; ¢ D}.

Proof: Item (i) follows from Corollaries 1, 2 and Proposition 6. Item (ii) follows from Proposition
5 (in cases (i) and (ii) alternatively from Corollaries 1, 2). Ttems (iii) and (iv) are proved precisely

(i), i) -
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Figure 5: (a) A class-1 customer waiting in the queue, no free servers in station A, and one free
server in station B. (b) A class-2 customer moved from station A to station B and the class-1
customer moved from the queue to station A

.|

10 On joint work conservation

We argue that joint work conservation is in many cases a desired property for problems with
preemption (for problems without preemption work conservation is typically not optimal, cf. [4],
but since the distinction between the two is expected to disappear in the limit, it is expected that
joint work conservation is, in a sense, asymptotically optimal). We only consider an example and
do not attempt a rigorous treatment. We comment that even in the context of one station, proving
that work conservation is optimal is not trivial, especially in a non Markovian system, as discussed
in [4]. However, it is believed that the argument below can be greatly generalized, and this will be
the subject of future work.

Example 4 The example consists of a Markovian system with two customer classes and two server
types (see Figure 5). In (a) there is a customer of class 1 in the queue and a free server of type B.
Although the free server cannot serve this customer, a rearrangement is possible so as to allow all
customers to be served (b). We shall argue that ‘good’ preemptive policies prefer option (b) over
(a). Clearly this question must be coupled with the cost criteria. For concreteness, consider a cost
of the form > ¢;Y; per unit time (weighted sum of queue lengths). Use the fact that optimality
is obtained by feedback policies, that observe only the state: Number of customers at each class
present in the system. Given a feedback policy 7w that leaves a customer in queue 1 when there
is a free server in station B, we show there exists a policy 7 that pays a smaller cost on average.
The argument is valid if (i) po4 < max(pi4, pep) and otherwise if (ii) c¢1y > cop24. Arguing by
coupling and assuming the system starts at the described state as time zero, let 7 move a class-2
customer, C5, from station A to station B and let it move the class-1 customer waiting in the
queue, C1, into station A, until, at time 7, there is an arrival or a service in one of the systems (i.e.,
the system under 7w and that under 7). If the first to occur is an arrival or a service to a customer
other than Cy or Cy, T switches back to act like 7 for all times. In case (i) one can perform the
coupling in such a way that service to C; under 7 always occurs later than the first between service
to C1 and service to C5 under 7. If either service to C; or to Cy under 7 is the first to occur, 7
then mimics 7 except for the single customer that under 7 is not present and may still be present
for a while under «. In all cases the cost paid by 7 is not greater than that paid by «. In case
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(ii), if the first to occur is service to Cy under 7, an event we denote by 7, then from that time on
7 keeps C9 in the queue forever, and mimics 7 with regards to all other customers. On the event
1 the cost increases under 7 by at most co fooo e 7%ds, and the probability of n is poa/A¢ where
Ag = A?—i—n)\g—i-\ll[l]ﬁum—i-\l/gﬁum+‘Ifg’gu23. Hence CZMQA'Y_IAal is lost. On the event ¢, the cost
decreases under 7 by at least ¢; fOT e~ "%ds. Hence an amount of ¢; E[1,e fOT e~ 15ds] ~ 1 ET = ¢1 /Ao

is gained. Therefore if copoa < ¢17y, gain is greater than loss.

Appendix

Proof of Proposition 1: Let 7g € Z be the root. We show the following claim by backward
induction on k: For k € [1, K] even [resp., odd], if i € [y [resp., j € lg] then thi,;) [resp., ¥jq()] is
uniquely determined by (28) and (29).

Induction base: k is the largest n such that [, is nonempty. If k is even, let 7 € l;. Then B(i)
is empty and (28) implies Yia(i) = @i The case k odd is similar. Induction step: Assume the claim
holds for k. Consider the case where k is odd (the case k even is treated similarly). for i € [, (28)
shows 14y = @i — > JeB() 1;j, and since by the induction assumption ;; are uniquely determined
for j € B(7), so is Yia(i)- This completes the proof by induction and the result follows. ]

Proof of Theorem 1: Based on Proposition 7, the proof of Theorem 1 is similar to the proof
of Theorem 2 of [4]. Since this is the main result of this paper, we have repeated it here with
modifications, mainly to accommodate case (iii).

We first consider the equation (41) on a smooth open bounded connected domain D, satisfying
an exterior sphere condition, with boundary conditions

f(z) =V(z), z€dD. (89)

The key is a result from [9] regarding existence of classical solutions in bounded domains, with
merely continuous boundary conditions. To use this result, we verify the following two conditions.

(i) |H(z,p)| < c(1 + ||p||) for z € D, where ¢ does not depend on z or p.
(i) H(z,p) € C5(D x R?), some ¢ € (0, 1).

Item (i) is immediate from the local boundedness of b(z,U) and L(z,U). Next we show that item
(ii) holds. For § > 0 let V' be such that H(y,q) > b(y,V) -q+ L(y,V) — §. Write

H(:E,p) - H(yaQ) < b(x,V) -p—l—L((II,V) - b(y,V) “q— L(ya V) + 4.

Using the Holder property of L in z uniformly for (z,V) € D x U, and the Lipschitz property of b
in z, uniformly in (z,V),

H(z,p) — H(y,q) < cllp —qll +cllpllllz — yll + cllz — ylI* + 6.
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Since § > 0 is arbitrary, it can be dropped. This shows that H is Héolder continuous with exponent
o, uniformly over compact subsets of D x R?. Hence (ii) holds.

Defining for (z,z,p) € D x R x R, A(z,zp) = (1/2)r®p, B(z,z,p) = H(z,p) — vz, one can
write equation (41) in divergence form as

divA(z, f,Df) + B(z, f,Df) = 0.

The hypotheses of Theorem 15.19 of [9] regarding the coefficients A and B hold in view of (i) and
(ii). Indeed, B is Holder continuous of exponent g, uniformly on compact subsets of D x R x R
Moreover, with 7 = 0, v(z) = (1/2)min; r2, pu(z) = c¢(1 + ||2]|), @ = 2, by = 0 and a; = 0, one
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checks that the conditions (15.59), (15.64), (15.66) and (10.23) of [9] are satisfied. Theorem 15.19
of [9] therefore applies. [We comment that there is a typo in the statement of the conditions of the
theorem in [9]: the reference should be to condition (15.59) instead of (15.60).] It states that there
exists a solution to (41) in C%¢(D)NC(D), satisfying the continuous boundary condition (89). We
denote this solution by f.

Let € D. Let 7 be any admissible system in I, and let X be the controlled process associated
with z and 7. Let 7 denote the first time X hits dD. Using Ito’s formula for the C'?(R, x D)
function e~ f(z), in conjunction with the inequality

Lf(y)+b(y,U) - Df(y) + L(y,U) —vf(y) >0, y€D,UET,

satisfied by f, one obtains

tAT

f(z) < /0 N LK, Uy)ds + 1D f(Xnr) — /0 e DF(X,) - rdW,.  (90)

Taking expectation and then sending ¢ — 0o, using monotone convergence for the first term and
bounded convergence for the second term, we have with g(t,z) = e "'V (z),

f(@) < ET] / eI, us)ds + V(X)) = O (2 7).
0

Taking infimum over 7 € II, we have
f(2) < Vp (@) = V(2), zeD,

where the last equality follows from Proposition 7 (iv).

In order to obtain the equality f = V on D, we next show there exist optimal Markov control
policies for the control problem on D. Let

o(z,U) = b(z,U) - Df(z) + L(z,U), z € D,U€U. (91)
Note that ¢ is continuous on D x S*. For each z, consider the set U, # () of U € U for which

= inf .
p(z,U) = inf o(z,V)
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We show that there exists a measurable selection of U,, namely there is a measurable function h
from (D, B(D)) to (U, B(U)) with h(z) € U,, z € D.

Let x,, € D and assume lim, z, =z € D. Let U, be any sequence such that U,, € U,,. We claim
that any accumulation point of U, is in U,. For, if this is not true, then by continuity of ¢, there is a
converging subsequence U,,, converging to U and there is a U such that § := o(z, (7) —(z, U) > 0.
Hence for all m large, ¢(m, Un) > o(x,U) + /2 > @(&m, U) + §/4, contradicting U,, € U,,, .

As a consequence, the assumptions of Corollary 10.3 in the appendix of [6] are satisfied, and it
follows that there exists a measurable selection b : D — U of (U,,z € D).

We extend h to R’ in a measurable way so that it takes values in U (but otherwise arbitrary).
Clearly, = — b(z, h(x)) is measurable. Consider the autonomous SDE

X(t) =z +rW(t) + / t b(X,)ds, (92)
0

where b(y) agrees with b(y,h(y)) on D, and is set to zero off D. Then b is measurable and
bounded on R’. By Proposition 5.3.6 of [15], there exists a weak solution to this equation. That is,
there exists a complete filtered probability space on which X is adapted and W is a #dimensional
Brownian motion, such that (92) holds for ¢ > 0, a.s. On this probability space, consider the process
Us = h(Xs). Since X has continuous sample paths and is adapted, it is progressively measurable
(see Proposition 1.13 of [15]) and by measurability of h, so is U. Denote by 7 the admissible system
thus constructed. Then for s < 7, Us € Uy,, and

b(Xsa Us) : Df(Xs) + L(XSa Us) = H(XSa Df(Xs))
Hence
['f(X) + b(Xsa Us) : Df(Xs) + L(Xsa Us) - 'Yf(Xs) = 07 § < T, (93)

A use of Ito’s formula and the convergence theorems just as before now shows that (90) holds with
equality, and

flz) = E;r[/ e PL(Xs,Us)ds +e7 7TV (X7)] = Cp g(:z:,w), z €D,
0 k)

with g as above. This, together with Proposition 7(iv) shows that f > Vj g =V on D. Summariz-
ing, f =V on D.

In particular, V € 02’9(13) and is a classical solution to the HJB equation. D can now be taken
arbitrarily large, and this shows that V' € C%¢(R"), and that it satisfies the HJB equation on R,
In view of Proposition 7(ii), it also satisfies the polynomial growth condition. As a result, there
exists a classical solution to (41) in C*¢(R"), again denoted by f, satisfying (42), and moreover,
V=Ff.
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It remains to show uniqueness within Cgol(Rf) and existence of optimal Markov control policies
for the problem on R”. Let f € CSOI(RZ_) be any solution to (41). Then analogously to (90) we
obtain

t t
flz) < /0 e PL(Xs,Us)ds + e_’ytf(Xt) - /0 e_’ystT(Xs) -rdWs. (94)

Taking expectation, sending ¢ — oo, using the polynomial growth of f and the moment bounds on
| X;|| asserted in Proposition 7(i), one has that f(z) < C(z,7), where = € II (7 € II in case (iii))
is arbitrary. Consequently, f <V on R?.

In cases (i) and (ii), the proof of existence of optimal Markov policies as well as the inequality
V < f on R is completely analogous to that on D, where one replaces D by R'. The weak
existence of solutions to (92) follows on noting that b satisfies a linear growth condition of the form
1b(y)|| < z(1 + ||lyll), ¥y € R?, and using again Proposition 5.3.6 of [15]. Then as before, (94) is
satisfied with equality, and taking expectation and using the polynomial growth condition of f and
the moment estimates on || X || shows that V' = f on R". We conclude that f is the unique solution
in C’gol(Ri), that V = f, and that there exists a Markov control policy, optimal for all z € R®.

In case (iii) there is no guarantee that the admissible system m constructed using (92) is in II,
and therefore the term e~ ET f(X;) in (94) (that is satisfied with equality) may not tend to zero
as t — oo. However, in this case we only claim uniqueness among nonnegative functions f, and
therefore using Ito’s formula and (93) gives

t B t
() = BT /0 e L(X,, Uy)ds + e~ F(X,)] > B /0 e L(X,, Uy)ds],

and f(z) > C(z,m) > V(z). U
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