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Abstract

Overlay networks architecture should support high-performance and high-scalability at low costs. This becomes
more crucial when communication, storage costs as well as service latencies grow with the exploding amounts of data
exchanged and with the size and span of the overlay network. For that end, multicast methodologies can be used to
deliver content from regional servers to end users, as well as for the timely and economical synchronization of content
among the distributed servers. Another important architectural problem is the efficient allocation of objects to servers
to minimize storage, delivery and update costs.

In this work, we suggest a multicast based architecture and address the optimal allocation and replication of dy-
namic objects that are both consumed and updated. Our model network includes application servers which are potential
storage points connected in the overlay network, consumers which are served using multicast and/or unicast traffic and
media sources which update the objects using multicast communication. General costs are associated with distribution
(download) and update traffic as well as the storage of objects in the servers.

Optimal object allocation algorithms for tree networks are presented with complexities ofO(N) in case of multicast
distribution andO(N2) in case of hybrid unicast/multicast distribution. A special case of the hybrid distribution
problem automatically selects, for each user, between multicast and unicast distribution.

Using the techniques of the optimal tree algorithm we also present an efficient approximation algorithm for general
networks in case of multicast only distribution.

Index Terms

Content Distribution, Location Problems, Multicast, Overlay Networks, Tree Networks

I. I NTRODUCTION

Recent years have witnessed tremendous activity and development in the area of content and services distribu-
tion. Geographically dispersed consumers and organizations demand higher throughput and lower response time for
accessing distributed content, outsourced applications and managed services. In order to enable high quality and re-
liable end-user services despite unpredictable Internet and Intranet conditions, organization and applications service
providers (ASPs) employ content distribution networks (CDN) and overlay networks. These networks bring content
and applications closer to their consumers, overcoming slow backbone paths, network congestions and physical la-
tencies. Multiple vendors such as Cisco [1], Akamai [2] and Digital Fountain [3] offer CDN services and overlay
technologies. Recently, more collaborative models such as distributed storage and peer-to-peer computational models
require both consumption and modification of the content by multiple, geographically distributed users [4,5].

An overlay network is a set of application servers that are connected through the general Internet Infrastructure.
Naturally, organizations and ASPs try to optimize the overall cost of the overlay network mainly in terms of storage and
communication costs. Efficient allocation of information objects to the overlay network servers reduces the operational
cost and improves the overall performance. This becomes more crucial as the scale of services extend to a large number
of users over international operation where communication and storage costs as well as network latencies are high. The
optimization problem becomes more difficult as the service becomes dynamic and needs to be changed, updated and
synchronized frequently.

The popularity of multicast for distribution of the content is increasing with the introduction of real-time and multi-
media applications that consume high bandwidth and are delivered to a large number of consumers. Although multicast
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is efficient for a large number of consumers, unicast can still be more effective for a small number of consumers, espe-
cially for a sparse distribution of the consumers.

Overlay multicast networks are overlay networks which use multicast as the transport protocol between the vertices
of the network [6]. Most of the overlay multicast networks are based on a single multicast tree that connects the
participating vertices [6–9]. A network wide single multicast tree, may suffer from scalability, reliability and QoS
problems as well as high communication costs due to the use of international and long distance links. Moreover, most
IP backbones (backbone of Internet providers and even private WAN backbone) are not IP multicast enabled. On the
other hand, multiple multicast trees, especially in LANs or campuses, rooted at regional servers, may take advantage
of underlying IP multicast support and scale better. It can also save long distance communication costs and provide
a better QoS by storing the high demand objects locally. The new approach suggested in this paper is to combine the
replication of mirrors/proxies used in CDNs with multicast based distribution/update and achieve better scalability of
the service while maintaining a low cost of storage and communication.

Our initial model is a tree graph that has a server located at each of its vertices. The vertices also include optional
entries to local consumers and media sources. Each server is assigned with a storage cost and each edge is assigned with
distribution and update communication costs. The distribution demand of the consumers and the update requirements
of the media sources are known a-priory. The consumers are served from servers using multicast and/or unicast
communication. The media sources update and modify the objects within the servers. The update traffic between a
media source and the relevant servers is most efficiently conducted using multicast communication, since it can reduce
significantly the overall update transport and the update latency.

Our goal is to find an optimal allocation, e.g., the set of servers which store an object, with the minimum overall
(communication and storage) cost. The consumers are assigned to the servers in a way that each consumer is served by
exactly one server for an object. It is clear that by changing the number of copies, we introduce a tradeoff between the
storage/update costs that increase with the number of copies and the distribution cost that decreases with this number.

In [10], we presented an optimal allocation algorithm for the multicast only distribution on trees. In this work we
extend the problem in two new directions. The first direction is an optimal allocation algorithm for the hybrid uni-
cast/multicast distribution on trees with computational complexity ofO(N2). We present two different cases where the
mode of operation per consumer (multicast or unicast) is given a-priori or is automatically optimized by the algorithm
itself. The second direction is an algorithm for general networks in case of multicast only distribution. In the general
network case, we replace the fixed tree structure with a (approximated) Steiner tree as the suggested multicast tree
structure and apply the same optimization techniques over that tree. Once new content locations are assigned we can
apply this scheme repeatedly until it converges.

A. Related work

Application level multicast and overlay multicast protocols have been studied in recent years. Most of the works
are focused on the structure of the overlay topology (i.e. the way the multicast tree is constructed) for a single tree
[6–9]. Our work assumes the overlay network topology is a tree, but instead of focusing on the construction of such
a tree, we focus on the way the tree should be partitioned to multiple regional multicast trees while optimizing the
communication and storage cost.

The object allocation problem, also referred as the file allocation problem in storage systems [11] or data man-
agement in distributed databases has been studied extensively in the literature. Kalpakis et al. [12] and Krick et al.
[13] present a model of a network with unicast reads, multicast writes and storage costs. [12] presents a problem with
additional constrains for a tree network and the algorithm they suggest is less efficient than our hybrid distribution
algorithm. [13] deals with general networks and suggests an optimal algorithm in tree networks which is also less
efficient than our hybrid distribution algorithm. These works don’t solve the multicast reads and multicast writes prob-
lem. Moreover, [12, 13] use an MST based update in which a media source sends a unicast message to the closest
server (which stores an object) and the server itself forwards a multicast message over the MST to other servers (i.e.
- multicast is used only between the servers). This scheme does not employ properly the native IP multicast model
where a single source can send traffic directly to all the servers via a multicast tree. In terms of computational com-
plexity, our algorithm isO(N2), compared toO(N5) in [12] andO(N · diam(T ) · log(deg(T ))) in [13] (Worst case
is O(N2 · log(N))). Additional works that address the severs/replicas placement problem for the read only unicast
distribution model can be found in [14–17].
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II. T HE MODEL

A. Objects

For each objecto of the objects setO, we determine the set of servers which store a copy of the object. The algorithm
handles each object separately, so the costs described below are defined (and can be different) for each objecto.

B. The tree network

Let T = (V, E) be a tree graph that represents a communication network, whereV = {1, . . . , N} is the set of
vertices andE is the set of edges. The tree is rooted at any arbitrary vertexr (r=1). Each vertex in the tree represents a
network switch and a potential storage place for object copies. Each vertex in the tree is also an entry point of content
consumers and/or media sources to the network. Distribution demands of consumers connected to vertexi are provided
by the network from the server at the closest vertex (or the closest multicast tree rooted at)j which stores a copy of the
object. An object update may be provided by any media source and is sent to all the vertices that store the object using
multicast.
Denote the subtree ofT rooted at vertexi asTi.
Denote the parent vertex of vertexi in T (i6=r) asPi.
Denote the edge that connects vertexi to its parent inT , (i, Pi) asei (er=∅).
Denote the set of edges inTi ∪ ei asEi (Er≡E).
Denote the set of vertices inTi asVi (Vr≡V ).
Denote the set of children vertices of vertexi in T asChi (For a leafi, Chi=∅).
Figure 1 displays a tree network with various costs related to its vertices and edges.

C. Storage cost

Let the storage cost of the object at vertexi to beSci.
DenoteΦ is the set of vertices that store the object.
The total storage cost of the object is

∑
i∈Φ Sci.
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Fig. 1. An example of a tree network and various costs

D. Distribution traffic cost

Denote the cost per distribution traffic unit at edgeei asUcdi (Ucdi>0). Sinceer=∅, Ucdr≡0.
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1) Multicast distribution traffic cost:The multicast distribution traffic provided to vertexi, Tdmi, is eitherTd or 0.
Td is used when at least one consumer connected toi requires the object and0 is used when no consumers connected
to i require the object1.
DenoteDmti the set of edges in the distribution multicast tree rooted at vertexi. If i/∈Φ, Dmti=∅.
The total multicast distribution traffic cost is

∑
i∈Φ Td · (∑e∈Dmti Ucde).

2) Unicast distribution traffic cost:The cost per distribution traffic unit along a path between verticesi andj is
Ddi,j =

∑
e∈Pi,j

Ucde, wherePi,j is the set of edges that connect vertexi to vertexj. We definePi,i≡∅ andDdi,i≡0.
Since the tree is undirected,Pi,j = Pj,i.
The total distribution traffic demand produced by all the consumers connected to vertexi is Tdui (Tdui≥0).
The total unicast distribution traffic cost is

∑
i∈V Tdui ·minj∈Φ Ddi,j . (If ∃j, k∈Φ s.t.Ddi,j=Ddi,k andj<k thenj,

the smallest index, is taken).

E. Multicast update traffic cost

Denote the cost per update traffic unit at edgeei asUcui (Ucui>0). Sinceer=∅, Ucur≡0.
The total multicast update traffic generated by all the media sources connected to vertexi is Tui (Tui≥0).
DenoteUmti,Φ as the set of edges of the multicast update tree from vertexi to Φ.

The total update traffic cost is
∑

i∈V Tui ·
(∑

e∈Umti,Φ
Ucue

)
.

III. T HE PROBLEM

The optimization problem is to find an object allocation that minimizes the total cost (storage and traffic):

∑

i∈Φ

Sci +
∑

i∈V

Tui ·
( ∑

e∈Umti,Φ

Ucue

)
+

∑

i∈Φ

Td ·
( ∑

e∈Dmti

Ucde

)
+

∑

i∈V

Tdui ·min
j∈Φ

Ddi,j

We developed an algorithm that solves the above optimization problem. The algorithm is called HDT (Hybrid
multicast/unicast Distribution on Tree graphs). The HDT algorithm is presented in section VIII.

Based on the general optimization problem we derived additional novel problems which are solved in this paper:
1) Multicast only distribution - we omitted the unicast distribution traffic from the general problem (and its total

cost
∑

i∈V Tdui ·minj∈Φ Ddi,j).
For a tree graph, we developed an algorithm called MDT (Multicast Distribution on Tree graphs).
For a general graph, we developed an approximation algorithm called MDG (Multicast Distribution on General
graphs), which uses a variant of MDT.

2) Mutual Exclusive hybrid distribution - the algorithm automatically selects between multicast and unicast distri-
bution to consumers. We replace the unicast distribution cost with

∑
i∈Vuc

Tdui ·minj∈Φ Ddi,j , whereVuc the
set of vertices which are served using unicast.
For a tree graph, we developed an algorithm called MX-HDT (Mutual eXclusive Hybrid Distribution on Tree
graphs).

IV. OPTIMAL ALLOCATION PROPERTIES

These properties are the fundamentals of our technique.

A. Per edge update traffic

As described in section II, a vertexi which is a root of a multicast update tree producesTui update traffic through
each edgee ∈ Umti,Φ. The update traffic of such a tree is directed fromi to Φ. Since the location of the media sources
is known a-priory, when we look at a single edge, we can determine the update traffic that will pass through it in each
direction, in case there are copies stored in the subtrees connected to it (in both ends of the edge).

1The reason for using the same traffic rate for all vertices in multicast is the fact that the server determines the transmission rate, not each
customer as in the unicast case.
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For each edgeei we defineTuout
i andTuin

i . Tuout
i is the total update traffic that is outgoing via vertexi and edgeei

out ofTi, in case there is at least one copy stored outsideTi. Tuin
i is the total update traffic that is incoming via vertex

i and edgeei into Ti, in case there is at least one copy stored inTi.

Tuout
i ←

∑

j∈Vi

Tuj = Tui +
∑

c∈Chi

Tuout
c

Tuin
i ←

∑

j /∈Vi

Tuj = Tuout
r − Tuout

i

B. Distribution traffic properties

Lemma 1:In the optimal allocation, in case of unicast distribution, if vertexi is served from vertexj, which satisfies
minj∈Φ Ddi,j , andi is served through vertexk (i.e. Pi,j=Pi,k∪Pk,j), thenk must also be served fromj.

Proof: Pi,j=Pi,k∪Pk,j ⇒ Ddi,j=Ddi,k+Ddk,j . Suppose vertexk is not served fromj, but from a different
vertexl. Since the solution is optimal there must existDdk,l<Ddk,j .
In that case we getDdi,l=Ddi,k+Ddk,l<Ddi,k+Ddk,j ⇒ a contradiction.

Lemma 2:In the optimal allocation, each vertexi can only belong to at most one multicast distribution tree.
Proof: Suppose a vertexi belongs to more than one multicast distribution tree, then by disconnecting it from

the other trees and keeping it connected to only one multicast distribution tree we reduce the distribution traffic in
contradiction to the optimality of the cost.

Lemma 3:In the optimal allocation, if vertexi is served through its neighbork in T (either parent or child), theni
andk are served from the same server.

Proof: The proof is a direct result of lemmas 1 , 2.
Corollary 1: The optimal allocation is composed of a subgraph ofT which is a forest of unicast and multicast

distribution subtrees. Each subtree is rooted at a vertex where a copy is located and its leaves are vertices were no copy
is stored and there is distribution demand. Each edge and vertex inT can be part of at most one unicast and at most
one multicast distribution subtree.

V. TREE BASEDALGORITHMS TECHNIQUE

The main idea behind the algorithms is the observation that in tree graphs, since there is only one edge from each
vertex i to its parent, and due to lemma 3, if we consider the influence of the optimal allocation outsideTi on the
optimal allocation withinTi, it is narrowed to a very small number of possibilities. We just have to consider the
possibility that there are or not copies outsideTi (and if i is served from such an external copy, where is it located),
there is or the isn’t multicast distribution demand outsideTi and also consider the possibility that no copy is located
within Ti (only wheni 6=r). We define scenarios that are possible for each vertex pairi, j in unicast distribution and
for vertexi in multicast distribution, which cover all these possible external influences on the optimal allocation within
Ti. In addition, due to the same lemma 3, it is fairly easy and straight forward to calculate the optimal allocation for
vertexi andTi based on the optimal allocation calculated for eachc andTc, wherec ∈ Chi.

As a result, our algorithms for tree graphs are recursive algorithms that find the optimal allocation for a new problem
which is a subset of the original problem for vertexi andTi, based on the optimal allocation computed by its children
Chi for their subsets of the original problem. (There are different new problems for the multicast/hybrid distribution
cases).

The algorithms are performed in two phases. The first phase is the cost calculation phase which starts at the leaves
and ends at the root, while calculating the optimal allocation and its alternate cost for each vertex pairi, j in hybrid
unicast/multicast distribution and each vertexi in multicast only distribution and for each scenario, based on the optimal
allocations calculated by the children of vertexi for all their possible scenarios. The second phase is a backtrack phase
which starts at the root and ends at the leaves where the algorithm selects the scenario which is active in the optimal
allocation (in the optimal solution there can be only one actual scenario possible for each vertex) and allocates the
copies in the relevant servers. The second phase is needed since only in the root it is possible to find the optimal
allocation of the entire tree, and since the algorithm works in a recursive way, the root doesn’t know the entire optimal
allocation, but only the actual scenarios of itself and its children as well as the cost of the optimal allocation.

The algorithms calculate the optimal object allocation cost as well as the set of servers that will store the object.



6

VI. T HE MDT ALGORITHM

The MDT algorithm was previously presented in [10], and this section provides a short reminder of that algorithm,
since its the simplest algorithm to understand.

Besides omitting the unicast distribution traffic, the algorithm assumes that the multicast distribution demand is the
same for all the vertices (∀i ∈ V , Tdmi=Td).

As described in section V, the algorithm is performed in two phases, the cost calculation phase and the backtrack
phase. We will only remind the cost calculation phase.

For the new problem we define a new tree, which is a subtree ofT constructed ofTi andei. We define 4 legal
scenarios for a vertexi andTi.

A. The cost calculation phase

For each vertexi the algorithm calculates forTi 4 alternate costs, for the following possible scenarios:
Cxii - There is no copy located insideTi (i 6=r). Edgeei will carry incoming distribution and outgoing update

traffic.
Cbii - Copies are located both inside and outsideTi but not all the internal consumers demand is supplied from

copies inTi. Edgeei will carry incoming distribution and both incoming and outgoing update traffic.
Cboi - Copies are located both inside and outsideTi and all the internal consumers demand is supplied from copies

in Ti. Edgeei will carry both incoming and outgoing update (and maybe outgoing distribution) traffic.
Cioi - All the copies of the object are located only insideTi. Edgeei will carry incoming update (and maybe

outgoing distribution) traffic.
The algorithm calculates the costs as follows:

Cxii ←
{

Td · Ucdi + Tuout
i · Ucui + sum4, if i 6= r

∞, if i = r

Cbii ←
{

Td · Ucdi + Tuin
i · Ucui + Tuout

i · Ucui + sum1 , if i 6= r & Chi 6= ∅
∞, if i = r ‖ Chi = ∅

Cboi ←
{ (

Tuin
i + Tuout

i

)
· Ucui + min{min1,min2} , if i 6= r

∞, if i = r

Cioi ←
{

Tuin
i · Ucui + min{min1, min2,min3} , if i 6= r

min{min1,min2,min3}, if i = r

where (various combinations of children scenarios):

sum1 =
∑

c∈Chi

min {Cxic, Cboc, Cbic}

sum2 =
∑

k∈Chi,k 6=c

min {Cxik, Cbok, Cbik}

sum3 =
∑

k∈Chi,k 6=c

Cxik

sum4 =
∑

c∈Chi

Cxic

min1 = Sci + sum1
min2 = min

c∈Chi

{Td · Ucdc + Cboc + sum2}
min3 = min

c∈Chi

{Td · Ucdc + Cioc + sum3}

note:sum1, sum2, sum3, sum4 equal0 andmin2,min3 equal∞ if vertex i is a leaf (Chi=∅).



7

The cost of the optimal allocation inT is Cior.

The computational complexity of MDT isO(N). The explanation for the complexity calculation, as well as proof
of optimality can be found in [10].

VII. T HE MDG APPROXIMATION ALGORITHM

The problem of finding the optimal allocation for multicast only distribution traffic in general graphs is NP-hard.
Nevertheless, we can analyze the properties of the optimal solution and suggest an approximation algorithm for the
optimization problem, based on the optimal allocation algorithm we developed for tree graphs.

A. Model changes for the General Graph

Besides omitting the unicast distribution traffic from the problem, we replace the tree graph (described in II-B) with
a general graph:
Let G = (V, E) be a connected graph that represents a communication network, whereV = {1, . . . , N} is the set of
vertices andE is the set of edges.

The notation of an edgee in the general graph is different from the one we defined in the tree graph. We defineei,j

- the edge that connects verticesi andj.
In addition, we define the same distribution and update cost per traffic unit at edgeei,j . I.e. Ucde≡Ucue. This is a

reduction of the original traffic cost model, but it is still reasonable since in the real world usually the cost per traffic
unit is the same for all kinds of traffic.

Figure 2. displays a graph network with various costs related to its vertices and edges.
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Fig. 2. An example of a graph network and various costs.

B. The optimal allocation properties in general graphs

The Steiner tree problem [18] is defined as follows: given an undirected graph with a specified subset of vertices
called the terminals, find a tree with the minimum cost (lengths) of edges spanning all the terminals. According to this
definition, an optimal multicast tree in a general graph is a Steiner tree. The Steiner tree problem is NP-hard on general
graphs [19].
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The property of lemma 2 is also valid in general graphs. Each vertex belongs to at most one multicast distribution
tree. If we look at the optimal allocation, we can see again a forest of multicast trees that cover all the multicast
consumers. Each media source is a root of a multicast update tree that connects it to all the vertices which store an
object. The optimal solution in a general graph is a forest of Steiner trees that connect all the media sources to all the
servers which store an object, and each server to the set of consumers which it serves. The total cost of the optimal
allocation is constructed of the storage cost, the multicast update Steiner trees costs and the multicast distribution
Steiner trees costs.

Since finding a Steiner tree in a general graph is NP-hard, it is obvious that finding a forest of Steiner trees is NP-hard
as well.

C. The approximation algorithm heuristics

Since the allocation problem in general graphs is NP-hard, we use our optimal algorithm for trees in order to find an
approximation to the optimization problem.
We defined an efficient iterative algorithm that starts with a random or preset allocation, and converges to an allocation
which is optimal in an approximated Steiner tree extracted from the general graph.
In the model described above, the multicast distribution demand is not the same for all the vertices in the graph (Tdmi,
is eitherTd or 0), so we use a variant of the MDT algorithm described in section VI to solve the optimization problem
on the tree. We refer to this modified algorithm as XMDT (eXtended MDT). The detailed XMDT algorithm (e.g. cost
calculation formulas as well as the pseudo code of that algorithm) can be found in appendix I. We also provide an
algorithm for calculating the allocation cost in the general graph. We will refer to the cost calculation algorithm as
COSTalloc.

1) The MDG algorithm steps:The approximation algorithm in the general graph is:
1) Start with a random allocation. The number of copies allocated is either a constant number or a percentage ofN

- the number of vertices in the graph (network size) .
2) RunCOSTalloc on the initial allocation, save the initial allocation and setmincost to be the current cost.
3) Extract a Steiner tree from the general graph where the terminals are all the vertices with either distribution or

update demand and the vertices which store the object.
4) Run XMDT on the extracted Steiner tree. The algorithm will allocate copies in vertices of the extracted tree.
5) RunCOSTalloc on the current allocation. If the cost is smaller thanmincost save the current allocation and

updatemincost to be the current cost.
6) Repeat steps 3 to 5 till there is no improvement in the allocation cost.
At the end of the algorithm, the saved allocation is the suggested approximated allocation, and the saved cost (in

mincost) is the approximated cost.
Figure 3 describes the MDG algorithm flow chart.
2) Extracting a Steiner tree:The problem of finding a Steiner tree is NP-hard. There are several polynomial time

approximation algorithms for the problem. We selected the approximation algorithm suggested by Zelikovsky [20],
which has an approximation ratio of11/6 from the optimal solution. The Steiner points are the vertices that have
multicast or unicast demand, as well as the vertices which currently store a copy as the terminals for the Steiner tree
problem. We useUcde (≡Ucue) as the edge length.

3) Running the XMDT optimal algorithm on the tree:While extracting the Steiner tree, we also set the storage cost
and distribution and update demands for each vertex in the extracted tree according to the original values inG. We get
a tree network on which the allocation problem can be solved using the optimal allocation algorithm for tree networks
(XMDT). The algorithm finds a new allocation for the given tree. The resulting allocation may be the same as the
previous one, especially if the extracted tree is similar to the previous one.

4) Calculating the cost for a given allocation:The total cost of the allocation is constructed of the storage cost, the
multicast update Steiner trees costs and the multicast distribution Steiner trees costs.

Calculating the cost of a given allocation is an approximation algorithm by itself. Given the set of vertices with media
sources and their update demand, the set of vertices which allocate the object and the set of vertices with consumers
and their distribution demand, we need to find the forest of Steiner trees (which was not seen by XMDT, since it was
running on a tree and not on the entire graph).

The storage cost of the allocation remains
∑

i∈Φ Sci.
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Generate an initial 
random allocation.

Calculate mincost by 
running COSTalloc on
the initial allocation

Extract a Steiner tree
given the current allocation

Run XMDT on the extracted
tree to get a new allocation

Calculate newcost by 
running COSTalloc on

the new allocation
Is newcost< mincost ?

No

End. Cost is mincost. Allocation is that of mincost. 

Yes

Update mincost to be newcost.
Save the new allocation

Fig. 3. The flow chart of the MDG algorithm.

Each multicast update tree is a Steiner tree and is fairly easy to find. For each vertex with a media source, we
extract a Steiner tree that contains that vertex and all the vertices which store the object. The cost of such Steiner
tree rooted at vertexi is the update traffic demandTui multiplied by the total edge lengths of the Steiner tree, i.e.
Tui ·

(∑
e∈Usti,Φ

Ucue

)
, whereUsti,Φ is the set of edges in the update Steiner tree rooted ati.

It is much difficult to find the multicast distribution forest, since each vertex can be connected to at most one
multicast tree. We use an approximation for that problem: extract a singe distribution-only Steiner tree that contains
all the vertices which store the object and all the vertices with positive distribution demand. For each vertex that stores
the copy, set the storage cost to0 and for each vertex that doesn’t store the object to∞. Ignore the update demands of
the media sources. Use the original distribution demand values and unit cost per edge. Run XMDT on that tree. The
result is a forest of distribution trees. Please note that the extracted distribution-only Steiner tree may differ from the
Steiner tree used by XMDT to find the current allocation, since it doesn’t contain the vertices with only update demand
(i.e. - don’t have a distribution demand).

D. MDG Simulation results

We’ve generated general graphs using the Internet Model by Zegura et al. [21, 22]. We defined two Transit/Stub
based models which differ in the way the network is partitioned to top level domains and local domains.

In all the graphs, the unit traffic cost per edge was taken from the Internet model, while the values of storage costs
and update/distribution demands were randomly generated using the following guidelines: Uniform distribution of the
storage cost in the range of[10, 130] (average cost is70); 25% of the total number of vertices have distribution demand
(Td set to 4); A very small number (up to 3) of media sources withTu set to 1.

We’ve run our approximation MDG algorithm on these graphs, and compared the results to several random alloca-
tions for each graph. The difference between the random allocations is the number of copies. RAND3, RAND5 - an
allocation with an average number of 3, 5 copies respectively. RAND - an allocation with an average number of copies
which follows the average number of copies by MDG.

In each Internet model and for each network size, we defined ten (10) random graphs and ran MDG on each such
graph. We also generated the random allocations as described above. We’ve calculated the average cost and average
number of copies for each allocation type and each network size. The average costs are presented in table I.

We also generated charts of the average number of copies and average cost vs. the number of vertices in each
model. Each chart contains four (4) series - one of the MDG allocation and the other three are of the different random
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Model 1
size 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

MDG 371 358 489 507 739 981 811 791 1137 1087 1304 1058 1486 1654 1522 1821
RAND 610 646 902 894 1350 1582 1392 1645 2044 2009 2308 1819 2545 2843 2644 3415
RAND3 521 586 874 909 1190 1468 1361 1414 1834 1814 1967 1804 2217 2509 2345 2737
RAND5 593 735 904 917 1209 1572 1326 1501 1759 1786 2038 1667 2276 2532 2339 3263
MDG/RND 0.55 0.55 0.56 0.59 0.64 0.60 0.52 0.61 0.58 0.62 0.60 0.63 0.63 0.62 0.58

Model 2
net size 15 21 27 33 39 45 51 57 63 69 75 81 87 93

MDG cost 329 422 597 610 843 840 1113 1294 1190 1417 1289 1384 1664 2109
RAND cost 579 765 1017 1132 1473 1448 1992 2059 2135 2252 2523 2555 3044 3491
RAND3 cost 544 795 1030 1076 1422 1309 1701 1799 1885 2109 2180 2506 2495 3006
RAND5 cost 685 738 987 1074 1458 1310 1796 1993 1918 2196 2287 2450 2621 3075
MDG/RND 0.55 0.55 0.59 0.56 0.58 0.62 0.61 0.66 0.60 0.65 0.55 0.55 0.61 0.66

TABLE I
THE AVERAGE COSTS OF ALLOCATIONS IN GENERAL GRAPHS

allocations. Figure 4 displays these charts.
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Fig. 4. The number of copies and cost of allocations in general graphs

Our conclusions from the results are:
1) The average costs of the MDG algorithm allocations are significantly better than of the random allocations. The

average ratio between the MDG allocations costs and the random allocations costs is0.6 for both models.
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2) In both our Internet models, the average costs of the different random allocations produced almost similar costs.
This indicates that the number of copies didn’t have much affect on the overall random allocations costs. This
can happen when the storage and update costs are relatively lower than the distribution costs (so the major part
of the cost is the distribution traffic, which is very sensitive to the location of copies).

3) It can be seen, in both models, that the average number of copies and the average costs of the MDG allocations
are increasing as the number of vertices grows. This behavior seems to be very reasonable - as there are more
consumers in the network it is better to add more copies. The average cost increases since the storage and traffic
costs increase as the network size and number of copies increase.

VIII. T HE HDT OPTIMAL ALGORITHM

In this section we describe the general algorithm that solves the optimization problem defined in section III.

A. The algorithm

As described in section V, the algorithm is performed in two phases, the cost calculation phase and the backtrack
phase.

For the new problem we define a new tree,Ti,j , which is a subtree ofT constructed ofTi (the subtree ofT rooted at
i), and the additional set of edgesei (connects vertexi to its parent) andPi,j (the string that connects vertexi to j), in
casej /∈Ti.

The new optimization problem is defined as follows: Find the optimal allocation and its alternate cost inTi,j , given
the following assumptions:

1) There is a copy located at vertexj, j ∈ V . If j ∈ Vi vertexi is served by unicast distribution fromj. If j /∈ Vi

and vertexi is served by unicast distribution from outsideTi it is served fromj. Whenj /∈ Vi, since vertexj is
not part ofTi,j (just the path to it), its storage cost is ignored. Note: the difference between the case ofj ∈ Vi

andj /∈ Vi, is thati has the entire data (including storage cost) regarding copies allocation insideTi, but only
the unicast distribution cost from copies located outsideTi. For j /∈ Vi, i may decide that storing a copy in an
internal vertexl and be served from that copy is less expensive than being served fromj. This is only relevant
for unicast distribution traffic.

2) There is or isn’t a copy located insideTi. Relevant for update/distribution multicast traffic. Also - the values of
j must comply with this assumption.

3) There is or isn’t a copy located outsideTi. Relevant for update/distribution multicast traffic. Also - the values of
j must comply with this assumption.

4) When there are copies outsideTi, is there a need for incoming multicast distribution. I.e. are there consumers in-
sideTi that are connected to a multicast distribution tree through edgeei. Only relevant for multicast distribution
traffic.

5) When there are copies insideTi, is there a need for outgoing multicast distribution. I.e. are there consumers out-
sideTi that are connected to a multicast distribution tree through edgeei. Only relevant for multicast distribution
traffic.

Based on the above assumptions we define seven (7) scenarios that are possible for each vertex pairi, j. These
scenarios cover all the possible external influences on the optimal allocation withinTi.

B. The cost calculation phase

For each vertex pairi, j the algorithm calculates forTi,j , (vertexj is assumed to allocate a copy of the object), seven
alternate costs, for the following seven possible scenarios:

Cxni,j- Cost of eXternal only object allocation andNo incoming multicast distribution traffic. There is no copy
located insideTi (i6=r) and there is no internal multicast demand. Edgeei will only carry outgoing update
traffic. Legal only whenj /∈ Vi.

Cxii,j - Cost of eXternal only object allocation andIncoming multicast distribution traffic. There is no copy located
insideTi (i 6=r) and there is an internal multicast demand. Edgeei will carry incoming multicast distribution
and outgoing update traffic. Legal only whenj /∈ Vi.
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Cini,j - Cost of Internal only object allocation andNo outgoing multicast distribution traffic. All the copies of the
object are located only insideTi and there is no external multicast demand. Edgeei will carry incoming
update traffic. Legal only whenj ∈ Vi.

Cioi,j - Cost of Internal only object allocation andOutgoing multicast distribution traffic. All the copies of the
object are located only insideTi and there is an external multicast demand. Edgeei will carry incoming
update and outgoing multicast distribution traffic. Legal only whenj ∈ Vi.

Cbni,j - Cost ofBoth sides object allocation andNo multicast distribution traffic. Copies are located both inside and
outsideTi and there is no multicast demand through edgeei. Edgeei will carry both incoming and outgoing
update traffic.

Cbii,j - Cost of Both sides object allocation andIncoming multicast distribution traffic. Copies are located both
inside and outsideTi and there is an internal multicast demand through edgeei. Edgeei will carry incoming
multicast distribution and both incoming and outgoing update traffic.

Cboi,j - Cost of Both sides object allocation andOutgoing multicast distribution traffic. Copies are located both
inside and outsideTi and there is an external multicast demand through edgeei. Edgeei will carry both
incoming and outgoing update and outgoing multicast distribution traffic.

The algorithm calculates the alternate costs as follows:

Cxni,j ←
{
∞, if j ∈ Vi

Tdui ·Ddi,j + Tuout
i · Ucui + sum1 , if j /∈ Vi

Cxii,j ←
{
∞, if j ∈ Vi

Td · Ucdi + Tdui ·Ddi,j + Tuout
i · Ucui + sum2 , if j /∈ Vi

Cini,j ←





Tdui ·Ddi,j + Tuin
i · Ucui + min {sum4, sum5, sum6, sum8,min1} , if j ∈ Vk,

k ∈ Chi

Tuin
i · Ucui + Sci + sum3, if j = i

∞, if j /∈ Vi

Cioi,j ←





Td · Ucdi + Tdui ·Ddi,j + Tuin
i · Ucui + min {sum5, sum8,min1} , if j ∈ Vk,

k ∈ Chi

Td · Ucdi + Tuin
i · Ucui + Sci + sum3, if j = i

∞, if j /∈ Vi

Cbni,j ←





Tdui ·Ddi,j + (Tuin
i + Tuout

i ) · Ucui + min {sum6, sum8,min1} , if j ∈ Vk,
k ∈ Chi

(Tuin
i + Tuout

i ) · Ucui + Sci + sum3 , if j = i

min
{

min
l∈Vi

Cbni,l
(∗),

Tdui ·Ddi,j + (Tuin
i + Tuout

i ) · Ucui + min {min2,min4}
} , if j /∈ Vi

Cbii,j ←





Td · Ucdi + Tdui ·Ddi,j + Tuin
i · Ucui + Tuout

i · Ucui + sum7 ,
if j ∈ Vk,

k ∈ Chi

∞, if j = i

min
{

min
l∈Vi

Cbii,l
(∗),

Td · Ucdi + Tdui ·Ddi,j + (Tuin
i + Tuout

i ) · Ucui + min3
} , if j /∈ Vi

Cboi,j ←





Td · Ucdi + Tdui ·Ddi,j + (Tuin
i + Tuout

i ) · Ucui + min {sum8,min1} , if j ∈ Vk,
k ∈ Chi

Td · Ucdi + (Tuin
i + Tuout

i ) · Ucui + Sci + sum3 , if j = i

min
{

min
l∈Vi

Cboi,l
(∗),

Td · Ucdi + Tdui ·Ddi,j + (Tuin
i + Tuout

i ) · Ucui + min4
} , if j /∈ Vi
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(∗) The minimum value can be calculated once during the calculation of eachCb?i,j , j∈Vi, given that these values are calculated prior to

calculating anyCb?i,j , j /∈Vi
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Fig. 5. An optimal allocation example, the actual scenarios and the distribution forest

where (various combinations of children scenarios):

sum1 =
∑

k∈Chi

Cxnk,j

sum2 =
∑

k∈Chi

min {Cxnk,j , Cxik,j}

sum3 =
∑

k∈Chi

min {Cxnk,j , Cxik,j , Cbnk,j , Cbik,j}

sum4 = Cink,j +
∑

l∈Chi,l 6=k

Cxnl,j

sum5 = Ciok,j +
∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j}

sum6 = Cbnk,j +
∑

l∈Chi,l 6=k

min {Cxnl,j , Cbnl,j}

sum7 = min {Cbnk,j , Cbik,j}+
∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}

sum8 = Cbok,j +
∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}

min1 = min {Cbnk,j , Cbik,j}+ min
m∈Chi,

m6=k

{
Cbom,j +

∑
l∈Chi,

l6=k,l6=m

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}
}

min2 = min
k∈Chi

{
Cbnk,j +

∑

l∈Chi,l 6=k

min {Cxnl,j , Cbnl,j}
}

min3 = min
k∈Chi

{
min {Cbnk,j , Cbik,j}+

∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}
}
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min4 = min
k∈Chi

{
Cbok,j +

∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}
}

note:sum1, sum2, sum3, sum4, sum5, sum6, sum7 andsum8 equal0, min1,min2,min3 andmin4 equal∞ if
vertexi is a leaf (Chi=∅). Also sum1, sum4, sum6 andmin2 equal∞ in case vertexi satisfiesTdmi > 0

The cost of the optimal allocation inT is minj∈V Cinr,j .
The proof of optimality of the algorithm and a detailed explanation about the combinations are given in appendix II.

C. Backtracking for content allocation

While calculating the alternate costs for each vertex pairi, j, the algorithm remembers for each alternate cost (sce-
nario), if a copy needs to be stored at vertexi and the relevant scenario of each childk that was used in the calculation
(unless the scenario isxnk,j or xik,j , since it has no copy stored in its subtree). This is important for the backtracking
phase, and allows accurate placement of the copies while backtracking.

The backtrack phase is recursive, starts at the root and ends at the leaves ofT (can stop earlier if no child has a copy
in Vk). For each vertexi, the algorithm determines the actual scenario in the optimal allocation, if a copy should be
stored ati (will happen if(i, i) pair was selected for an actual scenario) and if it is necessary to keep advancing towards
the leaves ofT . The algorithm uses the backtrack information that was saved earlier..

Figure 5 demonstrates an optimal allocation, the various actual scenarios selected during the backtrack phase, and
the distribution forest for that allocation.

D. Computational complexity of HDT

In the cost calculation phase, each vertex in the treei∈V the algorithm calculates up to7·N alternate costs. Each cost
calculation requiresO(|Chi|+1). Therefore the total complexity of cost calculation for vertexi is (7·N)·O(|Chi|+1).
The total complexity of the cost calculation phase for the entire tree is:

∑
i∈V (7 ·N) ·O(|Chi|+ 1).

The complexity of the backtrack phase for vertexi is O(|Chi|+ 1).
|V |=N and the total number of children in the tree isN−1 (only the rootr is not a child).
Therefore:

OHDT =
∑

i∈V

(7 ·N + 1) ·O(|Chi|+ 1) = O((7 ·N + 1) ·
∑

i∈V

(|Chi|+ 1)) =

O((7 ·N + 1) · (2 ·N − 1)) = O(N2)

The computational complexity of HDT isO(N2).

IX. T HE MX-HDT OPTIMAL ALGORITHM

A variant of the original model in which the consumers connected to a vertex are served (distribution traffic) either
by unicast or multicast but not both. The decision of which protocol to use is done by the network in order to reduce
the total cost.

A. Model changes

The mutual exclusive hybrid model assumes that only one of unicast/muticast distribution traffic is provided to each
vertex. The advantage of multicast over unicast is the aggregation of multiple streams into a single stream. On the other
hand, unicast is much easier to control (in terms of flow control). We can say that the effective bandwidth requirements
of a single unicast stream are smaller than a single multicast stream. Therefore, we modified the model as follows:

1) For each vertexi, bothTdui andTdmi are defined and satisfy:Tdmi, is eitherTd or 0. Tdui = q · Tdmi.
0 < q < 1. I.e. - unicast requires less bandwidth per stream.

2) A vertex can only be served either by unicast or by multicast. The selection is done automatically by the system
in order to optimize the overall cost.
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B. Optimal solution properties

Although the optimal solution properties presented in section IV are still valid here, the property described in lemma
1 is redefined to fit the current model this way: In the optimal allocation, in case of unicast distribution, if vertexi is
served from vertexj, which satisfiesminj∈Φ Ddi,j , andi is served through vertexk (i.e. Pi,j=Pi,k ∪Pk,j), then if
another vertexl is served by unicast distribution through vertexk, l must also be served fromj. The modification here
implies thatk itself may not be served by unicast distribution.

We also add an important property, to the specific case of mutual exclusive distribution traffic:
Lemma 4:In the optimal allocation, if there is multicast distribution traffic through vertexi, then vertexi must

belong to a multicast distribution tree (this property is not correct for unicast distribution).
Proof: Suppose there is multicast distribution traffic through vertexi, andi is served by unicast distribution.

In this casei belongs to both kinds of distribution trees, and this is a contradiction of the mutual exclusive traffic
condition. Note: the opposite is not a contradiction, i.e. if there is unicast distribution traffic through vertexi (i.e. -
another vertexk is served by unicast distribution throughi), then vertexi may be served either by multicast or unicast
distribution.

As suggested in corollary 1, and based on the above properties, the optimal allocation is composed of a subgraph of
T which is a forest of distribution (multicast and/or unicast) subtrees. Each subtree is rooted at a vertex where a copy is
located and its leaves are vertices were no copy of the object stored. An edge inT can be part of at most one multicast
distribution tree. If a vertex belongs to a multicast distribution tree, it may still path unicast distribution through its
edge.

C. The algorithm

As described in section V, the algorithm is performed in two phases, the cost calculation phase and the backtrack
phase.

For the new problem we define a new tree,Ti,j , which is a subtree ofT constructed ofTi (the subtree ofT rooted at
i), and the additional set of edgesei (connects vertexi to its parent) andPi,j (the string that connects vertexi to j), in
casej /∈Ti.

The new optimization problem is defined as follows: Find the optimal allocation and its alternate cost inTi,j , given
the following assumptions:

1) In case of unicast distribution, when a copy is located at vertexj, j ∈ V . If j ∈ Vi vertexi is served by unicast
distribution fromj. If j /∈ Vi and vertexi is served by unicast distribution from outsideTi it is served fromj.
Whenj /∈ Vi, since vertexj is not part ofTi,j (just the path to it), its storage cost is ignored. Note: whenj /∈ Vi,
i knows only the unicast distribution cost from copies located outsideTi. i may decide that storing a copy in an
internal vertexl and be served from that copy is less expensive than being served fromj.

2) There is or isn’t a copy located insideTi. Relevant for update/distribution multicast traffic. Also - the values of
j must comply with this assumption.

3) There is or isn’t a copy located outsideTi. Relevant for update/distribution multicast traffic. Also - the values of
j must comply with this assumption.

4) In case of multicast distribution traffic, when there are copies outsideTi, are there consumers insideTi that are
connected to a multicast distribution tree through edgeei.

5) In case of multicast distribution traffic, when there are copies insideTi, are there consumers outsideTi that are
connected to a multicast distribution tree through edgeei.

Based on the above assumptions we define seven (7) scenarios that are possible for each vertex pairi, j. These
scenarios cover all the possible external influences on the optimal allocation withinTi.

Figure 6. demonstrates the distribution forest with the different possible scenarios of the vertices and edges inT .

D. The cost calculation phase

For each vertex pairi, j the algorithm calculates forTi,j , (vertexj is assumed to allocate a copy of the object), seven
alternate costs, for the following seven possible scenarios:

Cxni,j- Cost of eXternal only object allocation andNo incoming multicast distribution traffic. There is no copy
located insideTi (i6=r) and there is no internal multicast demand. Edgeei will only carry outgoing update
traffic. Legal only whenj /∈ Vi.
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Fig. 6. An allocation, scenarios and distribution forest example

Cxii,j - Cost of eXternal only object allocation andIncoming multicast distribution traffic. There is no copy located
insideTi (i 6=r) and there is an internal multicast demand. Edgeei will carry incoming multicast distribution
and outgoing update traffic. Legal only whenj /∈ Vi.

Cini,j - Cost of Internal only object allocation andNo outgoing multicast distribution traffic. All the copies of the
object are located only insideTi and there is no external multicast demand. Edgeei will carry incoming
update traffic. Legal only whenj ∈ Vi.

Cioi,j - Cost of Internal only object allocation andOutgoing multicast distribution traffic. All the copies of the
object are located only insideTi and there is an external multicast demand. Edgeei will carry incoming
update and outgoing multicast distribution traffic. Legal only whenj ∈ Vi.

Cbni,j - Cost ofBoth sides object allocation andNo multicast distribution traffic. Copies are located both inside and
outsideTi and there is no multicast demand through edgeei. Edgeei will carry both incoming and outgoing
update traffic.

Cbii,j - Cost of Both sides object allocation andIncoming multicast distribution traffic. Copies are located both
inside and outsideTi and there is an internal multicast demand through edgeei. Edgeei will carry incoming
multicast distribution and both incoming and outgoing update traffic.

Cboi,j - Cost of Both sides object allocation andOutgoing multicast distribution traffic. Copies are located both
inside and outsideTi and there is an external multicast demand through edgeei. Edgeei will carry both
incoming and outgoing update and outgoing multicast distribution traffic.

The result of the property described in lemma 4, is that for each scenario which contains multicast distribution
through edgei (scenariosxii,j , ioi,j , bii,j andboi,j), vertexi must be part of a multicast distribution tree and can’t
be served by unicast distribution. On the other hand, for each scenario which does not contain multicast distribution
through edgei, vertex i may still belong to a multicast distribution tree (as a leaf) or may be served by unicast
distribution.

The algorithm calculates the costs as follows:

Cxni,j ←
{
∞, if j ∈ Vi

Tdui ·Ddi,j + Tuout
i · Ucui + sum1 , if j /∈ Vi

Cxii,j ←
{
∞, if j ∈ Vi

Td · Ucdi + Tuout
i · Ucui + sum2 , if j /∈ Vi
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Cini,j ←





Tuin
i · Ucui + min {sum4, sum5, sum6, sum8,min1} , if j ∈ Vk,

k ∈ Chi

Tuin
i · Ucui + Sci + sum3, if j = i

∞, if j /∈ Vi

Cioi,j ←





Td · Ucdi + Tuin
i · Ucui + min {sum5, sum8,min1} , if j ∈ Vk,

k ∈ Chi

Td · Ucdi + Tuin
i · Ucui + Sci + sum3, if j = i

∞, if j /∈ Vi

Cbni,j ←





(Tuin
i + Tuout

i ) · Ucui + min {sum6, sum8,min1} , if j ∈ Vk,
k ∈ Chi

(Tuin
i + Tuout

i ) · Ucui + Sci + sum3 , if j = i

min
{

min
l∈Vi

Cbni,l
(∗),

(Tuin
i + Tuout

i ) · Ucui + min {min2,min4}
} , if j /∈ Vi

Cbii,j ←





Td · Ucdi + Tuin
i · Ucui + Tuout

i · Ucui + sum7 ,
if j ∈ Vk,

k ∈ Chi

∞, if j = i

min
{

min
l∈Vi

Cbii,l
(∗),

Td · Ucdi + Tuin
i · Ucui + Tuout

i · Ucui + min3
} , if j /∈ Vi

Cboi,j ←





Td · Ucdi + (Tuin
i + Tuout

i ) · Ucui + min {sum8,min1} , if j ∈ Vk,
k ∈ Chi

Td · Ucdi + (Tuin
i + Tuout

i ) · Ucui + Sci + sum3 , if j = i

min
{

min
l∈Vi

Cboi,l
(∗),

Td · Ucdi + Tuin
i · Ucui + Tuout

i · Ucui + min4
} , if j /∈ Vi

(∗) The minimum value should be calculated efficiently ifCb?i,j , j∈Vi are calculated prior to calculating anyCb?i,j , j /∈Vi

where (various combinations of children scenarios):

sum1 =
∑

k∈Chi

Cxnk,j

sum2 =
∑

k∈Chi

min {Cxnk,j , Cxik,j}

sum3 =
∑

k∈Chi

min {Cxnk,j , Cxik,j , Cbnk,j , Cbik,j}

sum4 = Tdui ·Ddi,j + Cink,j +
∑

l∈Chi,l 6=k

Cxnl,j

sum5 = Ciok,j +
∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j}

sum6 = Tdui ·Ddi,j + Cbnk,j +
∑

l∈Chi,l 6=k

min {Cxnl,j , Cbnl,j}

sum7 = min {Cbnk,j , Cbik,j}+
∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}

sum8 = Cbok,j +
∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}



18

min1 = min {Cbnk,j , Cbik,j}+ min
m∈Chi,m6=k

{
Cbom,j +

∑
l∈Chi,

l6=k,l6=m

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}
}

min2 = Tdui ·Ddi,j + min
k∈Chi

{
Cbnk,j +

∑

l∈Chi,l 6=k

min {Cxnl,j , Cbnl,j}
}

min3 = min
k∈Chi

{
min {Cbnk,j , Cbik,j}+

∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}
}

min4 = min
k∈Chi

{
Cbok,j +

∑

l∈Chi,l 6=k

min {Cxnl,j , Cxil,j , Cbnl,j , Cbil,j}
}

note:sum1, sum2, sum3, sum4, sum5, sum6, sum7 andsum8 equal0, min1,min2,min3 andmin4 equal∞ if
vertexi is a leaf (Chi=∅).

The cost of the optimal allocation inT is minj∈V Cinr,j .

The proof of optimality of the algorithm and a detailed explanation about the combinations are given in appendix
III.

E. Backtracking for content allocation

The backtracking phase of MX-HDT is similar to that of HDT (described in subsection VIII-C).
Figure 6 demonstrates an optimal allocation, the various actual scenarios selected during the backtrack phase, and

the distribution forest for that allocation.
The pseudo code and backtrack details of the algorithm are given in appendix III.

F. Computational complexity of MX-HDT

The computational complexity of MX-HDT is O(N2)
The calculation of the complexity of MX-HDT is the same as of HDT (described in subsection VIII-D).

X. CONCLUSIONS

In this work, we addressed a content location problem in overlay networks with update from multiple media sources
and content distribution to users that employ multicast transport.

We developed optimal content allocation algorithms for tree networks with computational complexity ofO(N) for
multicast only distribution traffic andO(N2) for hybrid multicast and unicast distribution traffic. The algorithms are
recursive and are based on dynamic programming. These algorithms can easily be converted to distributed algorithms
due to the independent calculations at each vertex (which are only based on information from its neighbors) and due
to the hierarchical data flow

In addition to the optimal algorithms on tree networks, we presented an approximation algorithm for the multicast
only distribution traffic problem on general graph. The approximation algorithm is based on the optimal algorithm for
tree networks, while the extraction of trees from the general graph is done using Steiner tree approximation. We ran
our algorithm on a synthetic Internet based network and compared it to various random placements. The placements
generated by our approximation algorithm achieved significantly better overall costs (a ratio of 60% compared to the
random placements costs).

APPENDIX I
THE XMDT OPTIMAL ALGORITHM

In this appendix we present, without a proof of optimality, the XMDT algorithm used in the MDG algorithm flow
and its pseudo code.

In the algorithm description (subsection I-A) we provide only the cost calculation formulas, while in the pseudo
code (subsection I-B) we provide both the cost calculation and backtrack phases.
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A. The cost calculation phase

For each vertexi the algorithm calculates forTi seven alternate costs, for the following possible scenarios:
Cxni - Cost of eXternal only object allocation andNo incoming multicast distribution traffic. There is no copy

located insideTi (i6=r) and there is no internal multicast demand. Edgeei will only carry outgoing update
traffic.

Cxii - Cost of eXternal only object allocation andIncoming multicast distribution traffic. There is no copy located
insideTi (i 6=r) and there is an internal multicast demand. Edgeei will carry incoming multicast distribution
and outgoing update traffic.

Cini - Cost of Internal only object allocation andNo outgoing multicast distribution traffic. All the copies of the
object are located only insideTi and there is no external multicast demand. Edgeei will carry incoming
update traffic.

Cioi - Cost of Internal only object allocation andOutgoing multicast distribution traffic. All the copies of the
object are located only insideTi and there is an external multicast demand. Edgeei will carry incoming
update and outgoing multicast distribution traffic.

Cbni - Cost ofBoth sides object allocation andNo multicast distribution traffic. Copies are located both inside and
outsideTi and there is no multicast demand through edgeei. Edgeei will carry both incoming and outgoing
update traffic.

Cbii - Cost of Both sides object allocation andIncoming multicast distribution traffic. Copies are located both
inside and outsideTi and there is an internal multicast demand through edgeei. Edgeei will carry incoming
multicast distribution and both incoming and outgoing update traffic.

Cboi - Cost of Both sides object allocation andOutgoing multicast distribution traffic. Copies are located both
inside and outsideTi and there is an external multicast demand through edgeei. Edgeei will carry both
incoming and outgoing update and outgoing multicast distribution traffic.

The algorithm calculates the alternate costs as follows:

Cxni ←
{

Td · Ucdi + Tuout
i · Ucui + sum1, if i 6= r

∞, if i = r

Cxii ←
{

Td · Ucdi + Tuout
i · Ucui + sum2, if i 6= r

∞, if i = r

Cini ←
{

Tuin
i · Ucui + min{min1,min2,min3,min4,min5} , if i 6= r

min{min1,min2,min3,min4,min5}, if i = r

Cioi ←
{

Td · Ucdi + Tuin
i · Ucui + min{min1,min3,min5} , if i 6= r

∞, if i = r

Cbni ←
{

Tuin
i · Ucui + Tuout

i · Ucui + min{min1,min2,min3} , if i 6= r
∞, if i = r

Cbii ←
{

Td · Ucdi + Tuin
i · Ucui + Tuout

i · Ucui + sum3 , if i 6= r & Chi 6= ∅
∞, if i = r ‖ Chi = ∅

Cboi ←
{

Td · Ucdi +
(
Tuin

i + Tuout
i

)
· Ucui + min{min1,min3} , if i 6= r

∞, if i = r

where (various combinations of children scenarios):

sum1 =
∑

c∈Chi

Cxnc

sum2 =
∑

c∈Chi

min {Cxnc, Cxic}

sum3 =
∑

c∈Chi

min {Cxnc, Cxic, Cbnc, Cbic}
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min1 = Sci + sum3

min2 = min
c∈Chi



Cbnc +

∑

k∈Chi,k 6=c

min {Cxnk, Cbnk}




min3 = min
c∈Chi



Cboc +

∑

k∈Chi,k 6=c

min {Cxnk, Cxik, Cbnk, Cbik}




min4 = min
c∈Chi



Cinc +

∑

k∈Chi,k 6=c

Cxnk





min5 = min
c∈Chi



Cioc +

∑

k∈Chi,k 6=c

min {Cxnk, Cxik}




note: sum1, sum2 andsum3 equal0, min2,min3,min4 andmin5 equal∞ if vertex i is a leaf (Chi=∅). Also
sum1, min2 andmin4 equal∞ in case vertexi satisfiesTdmi > 0

The cost of the optimal allocation inT is Cinr.

B. Partial Pseudo code of XMDT

We assume that the vertices are ordered by breadth first ordering. Vertex1 is the root andn must be a leaf.
We also assume the∞ is the maximal number that exists in the computer.
Variables starting withBT are used for the backtrack process, and store a vertex number or the cost/vertex data.

The algorithm is performed in two phases. The first one is for calculating the optimal cost and the backtrack info
for later.
We only provide part of the first phase due to the large number of scenarios and combinations. The main idea in the
pseudo code provided is to show the combinations of children scenarios and to demonstrate the generation of backtrack
info.
Cost calculation phase
for i = n, n− 1, n− 2, ..., 2, 1 do

if Chi = ∅ then /* a leaf */
if Tdmi = 0 then /* No multicast demand */

Cxni ←∞
else

Cxni ← Tuout
i · Ucui

end if
Cxii ← Td · Ucdi + Tuout

i · Ucui

Cini ← Tuin
i · Ucui + Sci ; BT -Cini ← (i, ”local”)

Cioi ← Td · Ucdi + Tuin
i · Ucui + Sci ; BT -Cioi ← (i, ”local”)

Cbni ←
(
Tuin

i + Tuout
i

)
· Ucui + Sci ; BT -Cbni ← (i, ”local”)

Cbii ←∞ ; BT -Cbii ← ∅
Cboi ← Td · Ucdi +

(
Tuin

i + Tuout
i

)
· Ucui + Sci ; BT -Cboi ← (i, ”local”)

else
/* calculate sum1, sum2, sum3 (and sum4) */
sum1 ← 0 ; sum2 ← 0
sum3 ← 0 ; BT -sum3 ← ∅
sum4 ← 0 ; BT -sum4 ← ∅
foreachc in Chi do

sum1 ← sum1 + Cxnc

/* updatemin {Cxnc, Cxic} */
Cminxc ← Cxnc
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/* updatemin {Cxnc, Cbnc} */
Cminnc ← Cxnc ; Cminnc,type ← ”none”
/* updatemin {Cxnc, Cxic, Cbnc, Cbic} */
Cminc ← Cxnc ; Cminc,type ← ”none”
if (Cxic < Cminc) then

Cminxc ← Cxic
Cminc ← Cxic ; Cminc,type ← ”none”

end if
if (Cbnc < Cminc) then

Cminnc ← Cbnc ; Cminnc,type ← ”bn”
Cminc ← Cbnc ; Cminc,type ← ”bn”

else if (Cbnc < Cminnc) then
Cminnc ← Cbnc ; Cminnc,type ← ”bn”

end if
if (Cbic < Cminc) then

Cminc ← Cbic ; Cminc,type ← ”bi”
end if
sum2 ← sum2 + Cminxc

sum3 ← sum1 + Cminc ; BT -sum3 ← BT -sum3 ∪ (c, Cminc,type)
sum4 ← sum4 + Cminnc ; BT -sum4 ← BT -sum4 ∪ (c, Cminnc,type)

end do
/* calculate min1, min2, min3, min4, min5 */
min1 ← Sci + sum3 ; BT -min1 ← BT -sum3 ∪ (i, ”local”)
min2 ←∞ ; BT -min2 ← ∅
min3 ←∞ ; BT -min3 ← ∅
min4 ←∞ ; BT -min4 ← ∅
min5 ←∞ ; BT -min5 ← ∅
foreachc in Chi do

tmp ← Cbnc + sum4− Cminnc

if ( tmp < min2 & Tdmi > 0) then
min2 ← tmp ; BT -min2 ← (c, ”bn”) ∪

(
BT -sum4 \ (c, Cminnc,type)

)

end if
tmp ← Cboc + sum3− Cminc

if ( tmp < min3) then
min3 ← tmp ; BT -min3 ← (c, ”bo”) ∪

(
BT -sum3 \ (c, Cminc,type)

)

end if
tmp ← Cinc + sum1− Cxnc

if ( tmp < min4 & Tdmi > 0) then
min4 ← tmp ; BT -min4 ← (c, ”in”)

end if
tmp ← Cioc + sum2− Cminxc

if ( tmp < min5) then
min5 ← tmp ; BT -min5 ← (c, ”io”)

end if
end do
/* calculate the optimal costs */
if i 6= 1 then /* not root */

if Tdmi = 0 then /* No multicast demand */
Cxni ←∞

else
Cxni ← Td · Ucdi + Tuout

i · Ucui + sum1
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end if
Cxii ← Td · Ucdi + Tuout

i · Ucui + sum2
...
Cbii ← Td · Ucdi +

(
Tuin

i + Tuout
i

)
· Ucui + sum3 ; BT -Cbii ← BT -sum3

end if
/* calculate optimalCini cost and BT data */
ind = argmin{min1,min2,min3,min4,min5}
Cini ← Tuin

i · Ucui + minind ; BT -Cini ← BT -minind

end if
end do

The optimal cost isCin1.

Backtrack phase
The backtrack phase for allocation of copies is recursive and can easily be described using a recursive function.
The recursion starts by callingallocate(1, ”in”).
procallocate(i, type) {

if type = ”io” then
foreach(c, ctype) in BT -Cioi do

call allocate(c, ctype)
end do

else iftype = ”in” then
foreach(c, ctype) in BT -Cini do

call allocate(c, ctype)
end do

else iftype = ”bn” then
foreach(c, ctype) in BT -Cbni do

call allocate(c, ctype)
end do

else iftype = ”bo” then
foreach(c, ctype) in BT -Cboi do

call allocate(c, ctype)
end do

else iftype = ”bi” then
foreach(c, ctype) in BT -Cbii do

call allocate(c, ctype)
end do

else iftype = ”local” then
allocate a copy ati

end if
return

}

APPENDIX II
MORE ONHDT - PROOF AND PSEUDO-CODE

This appendix contains additional details on the HDT algorithm that were not included in section VIII.

A. Proof of HDT Optimality

The proof is based on induction. Lemma 5 is the induction base.
Lemma 5:For all scenarios, and for all verticesj∈V the algorithm optimally allocates the object inTi,j , wheni is

a leaf ofT



23

Proof: According to the definition of the new optimization problem, either one of the following possibilities
holds.

1) j=i (no string is connected), the algorithm allocates the object at vertexi. There is a copy located atTi therefore
Cxni,i andCxii,i can’t exist (set to∞). Cbii,i is also impossible, since there is no need for incoming multicast
distribution traffic wheni stores a copy. The valid possible scenarios areini,i, ioi,i, bni,i andboi,i which differ
in the assumptions thati is or isn’t the only vertex which stores a copy and there is or isn’t outgoing multicast
distribution traffic fromTi. Sincei stores a copy, there must be incoming update traffic through edgeei. The
optimal cost is constructed from the storage cost, the incoming update traffic throughei, and the additional
outgoing update and/or distribution traffic througheiwhen appropriate (Cioi,i, Cbni,i, Cboi,i).

2) j 6=i (j /∈Vi). A string Pj,i is connected toTi. According to the definition of the problem, there’s a copy of the
object located at vertexj and if i is served from outsideTi, i is served (unicast distribution) from that vertexj.
There is a copy located outsideTi thereforeCini,j andCioi,j can’t exist (set to∞). The scenariosxni,j and
xii,j assume that it costs more to store an object ini (and to keep it updated) than to be served fromj. The
scenarioxni,j is valid only if Tdmi = 0 (elseCxni,j = ∞ sincesum1 = ∞ whenTdmi > 0). The optimal
cost is the outgoing update traffic throughei and the incoming unicast (fromj to i) and/or multicast distribution
traffic throughei. The scenariosbni,j , bii,j andboi,j assume that it is cheaper to store a copy ini althoughj has
a copy. Sincei stores a copy, the costs calculated forbni,i, bii,i andboi,i must be used accordingly (achieved by
settingmin2,min3 andmin4 to∞ for a leaf vertex).

Lemma 6 constructs the induction step for the recursive proof of optimality.
Lemma 6:Assume that the algorithm optimally allocates the object to servers in every subtree rooted at vertexc

which is a child ofi (Tc, c∈Chi) for all scenarios and for all verticesj∈V , then the algorithm optimally allocates the
object inTi for all the scenarios and for all verticesj∈V .

Proof: According to the definition of the new optimization problem, either one of the following possibilities
holds.

1) j=i (no string is connected), the algorithm allocates the object at vertexi. There is a copy located atTi therefore
Cxni,i andCxii,i can’t exist (set to∞). Cbii,i is also impossible, since there is no need for incoming multicast
distribution traffic wheni stores a copy. The valid possible scenarios areini,i, ioi,i, bni,i andboi,i which differ
in the assumptions thati is or isn’t the only vertex which stores a copy and there is or isn’t outgoing multicast
distribution traffic fromTi. The vertices in each subtreeTk, k∈Chi may be served by unicast and/or multicast
either from vertexi or from copies located internally in the subtree. (The minimum of the following legal
scenarios for eachk∈Chi: Cxnk,j , Cxik,j , Cbnk,j , Cbik,j ⇒ sum3). Sincei stores a copy, there must be
incoming update traffic through edgeei. The optimal cost is constructed from the storage cost ati, the optimal
costs calculated by the children (sum3), the incoming update traffic throughei, and the additional outgoing
update and/or distribution traffic throughei when appropriate (Cioi,i, Cbni,i, Cboi,i).

2) j∈Vk, k∈Chi (no string is connected), the algorithm allocates a copy of the object at vertexj. There is a copy
located atTi thereforeCxni,j andCxii,j can’t exist (set to∞), and there must be incoming update traffic through
edgeei.
For each of the scenarios where no copy of the object is allocated outsideTi (ini,j andioi,j) or copies are also
located outsideTi (bni,j , bii,j andboi,j), one the following children combinations hold:

a) There are copies allocated only insideTk (at least at vertexj), and there is no outgoing multicast distribution
traffic from Tk (scenarioink,j). In this case the rest of the childrenl∈Chi, l 6=k must fulfil scenarioxnl,j

(sum4).
This combination is valid only whenTdmi = 0 (elsesum4 is set to∞) and only for scenarioini,j , since
there can be no outgoing multicast distribution traffic fromTi.

b) There are copies allocated only insideTk (at least at vertexj), and there is outgoing multicast distribution
traffic fromTk (scenarioiok,j). In this case the rest of the childrenl∈Chi, l 6=k must not allocate a copy in
Tl (scenariosxnl,j or xil,j) (sum5).
This combination is valid only for scenariosini,j andioi,j .

c) There are copies allocated both insideTk (at least at vertexj) and outsideTk, but there is no multicast
distribution through edgeek (scenariobnk,j). In this case the rest of the childrenl∈Chi, l 6=k may allocate
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a copy inTl but must not be served by incoming multicast distribution throughi (through edgeel) (scenarios
xnl,j or bnl,j) (sum6).
This combination is valid only whenTdmi = 0 (elsesum6 is set to∞) and only for scenariosini,j and
bni,j , since there can be no outgoing multicast distribution traffic fromTi.

d) This combination is only valid for scenariobii,j . In this scenario there is incoming multicast distribution
through edgesei.
There are copies allocated both insideTk (at least at vertexj) and outsideTk, andek. Vertex i is part
of a multicast distribution tree, through edgeei (one of scenariosbnk,j , bik,j). In this case the rest of the
children l∈Chi, l 6=k may allocate a copy inTl, and may be served by incoming multicast distribution
traffic throughi (andel) (sum7).

e) There are copies allocated both insideTk (at least at vertexj) and outsideTk, and there is outgoing multicast
distribution through edgeek (scenariobok,j). In this case the rest of the childrenl∈Chi, l 6=k may allocate
a copy inTl, and may be served by incoming multicast distribution traffic through vertexi (and edgeek)
(sum8).
This combination is not valid for scenariobii,j , due to lemma 2.

f) There are copies allocated both insideTk (at least at vertexj) and outsideTk (scenariosbnk,j or bik,j),
but there is outgoing multicast distribution through some edgeel, l∈Chi, l 6=k (scenariobol,j). In this case
the rest of the childrenm∈Chi, m 6=k, m 6=l may allocate a copy inTm, and may be served by incoming
multicast distribution traffic throughi (and edgeel) (min1).
This combination is not valid for scenariobii,j , due to lemma 2.

For each such scenario the minimal (optimal) valid children combination is selected, and the optimal cost is
constructed from that combination cost (min betweensum4, sum5, sum6, sum7, sum8 or min1), the unicast
distribution cost fromj to i, the cost of update traffic throughei (incoming only forCini,j , Cioi,j , both incoming
and outgoing forCbni,j , Cbii,j , Cboi,j) and the cost of multicast distribution traffic throughei (outgoing for
Cioi,j , Cboi,j , incoming forCbii,j).

3) j /∈Vi. A stringPj,i is connected toTi. According to the definition of the problem, there’s a copy of the object
located at vertexj and if i is served from outsideTi, i is served (unicast distribution) from that vertex. There is
a copy located outsideTi thereforeCini,j andCioi,j can’t exist (set to∞), and there must be outgoing update
traffic through edgeei.
For the scenarioxni,j , which means that no copy is located inTi and there is no incoming multicast distribution
traffic toTi, only one children combination is possible - all the childrenk∈Chi must fulfil scenarioxnk,j (sum1).
This scenario is valid only whenTdmi = 0 (elsesum1 is set to∞).
For the scenarioxii,j , which means that no copy is located inTi but there is incoming multicast distribution
traffic toTi, all the childrenk∈Chi must fulfil scenarioxnk,j or xik,j (sum2).
For each of the scenarios where copies are also located insideTi (bni,j , bii,j andboi,j), the unicast distribution
source of vertexi, may be an internal vertex (i.e.i may not be served fromj by unicast distribution). In
such a case, the unicast distribution sourcel,l∈Vi and the corresponding costCb?i,l will be used (expression
minl∈Vi Cb?i,l). In casei is served fromj by unicast distribution, it must not store an object and one the
following children combinations hold:

a) This combination is only valid for scenariobni,j . In this scenario there is no multicast distribution through
edgeei. There is at least one vertexk, k∈Chi which has at least one copy allocated inTk, and does not
produce outgoing multicast distribution traffic (scenariobnk,j). In this case the rest of the childrenl∈Chi,
l 6=k may allocate a copy inTl, but must not be served by incoming multicast distribution throughi (and
edgeel) (scenariosxnl,j or bnl,j) (min2).
This combination is valid only whenTdmi = 0 (elsemin2 is set to∞)

b) This combination is only valid for scenariobii,j . In this scenario there is incoming multicast distribution
through edgeei. There is at least one vertexk, k∈Chi which has at least one copy allocated inTk, and may
or may not be served by incoming multicast distribution throughi (scenariosbnk,j or bik,j). In this case
the rest of the childrenl∈Chi, l 6=k may allocate a copy inTl, and may be served by incoming multicast
distribution traffic throughi (andel) (min3).

c) There is outgoing multicast distribution through some vertexk, k∈Chi (scenariobok,j). In this case the rest
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of the childrenl∈Chi, l 6=k may allocate a copy inTl, and may be served by incoming multicast distribution
traffic through vertexi (andk) (min4).
This combination is not valid for scenariobii,j , due to lemma 2.

For each such scenario the minimal (optimal) valid children combination is selected, and the optimal cost is
constructed from that combination cost (min betweensum1, sum2,min2,min3 or min4), the unicast distribu-
tion cost fromj to i, the cost of update traffic throughei (outgoing only forCxni,j , Cxii,j , both incoming and
outgoing forCbni,j , Cbii,j , Cboi,j) and the cost of multicast distribution traffic throughei (outgoing forCboi,j ,
incoming forCxii,j , Cbii,j).

Theorem 1:When the algorithm ends,minj∈V Cinr,j holds the optimal allocation cost and the allocation of copies
is optimal.

Proof: The proof is conducted by the induction where lemma 5 is the base and lemma 6 is the step. For each
j∈V , Cinr,j represents an optimal allocation of the objects wherer is served fromj. The minimalCinr,j is the
optimal cost of the original optimization problem. In addition, the costsCxnr,j , Cxir,j , Cbnr,j , Cbir,j andCbor,j

are illegal since there can’t be copies allocated outsideTr ≡ T andCior,j is illegal there can’t be distribution traffic
throughr outside ofT .

B. Partial Pseudo code of HDT

We assume that the vertices are ordered by breadth first ordering. Vertex1 is the root andn must be a leaf.
We also assume the∞ is the maximal number that exists in the computer.
Variables starting withBT are used for the backtrack process, and store a vertex number or the cost/vertex data.

The algorithm is performed in two phases. The first one is for calculating the optimal cost and the backtrack info
for later.
We only provide part of the first phase due to the large number of scenarios and combinations. The main idea in the
pseudo code provided is to show the combinations of children scenarios and to demonstrate the generation of backtrack
info.
Cost calculation phase
for i = n, n− 1, n− 2, ..., 2, 1 do

/* calculate costs fori, i */
sum3 ← 0 ; BT -sum3 ← ∅
foreachk in Chi do

if Cxnk,i <= Cxik,i & Cxnk,i <= Cbnk,i & Cxnk,i <= Cbik,i then
sum3 ← sum3 + Cxnk,i

else ifCxik,i <= Cbnk,i & Cxik,i <= Cbik,i then
sum3 ← sum3 + Cxik,i

else ifCbnk,i <= Cbik,i then
sum3 ← sum3 + Cbnk,i ; BT -sum3 ← BT -sum3 ∪ (k, i, ”bn”)

else
sum3 ← sum3 + Cbik,i ; BT -sum3 ← BT -sum3 ∪ (k, i, ”bi”)

end if
end do
Cxni,i ←∞ ; Cxii,i ←∞ ; Cbii,i ←∞
Cini,i ← Tuin

i · Ucui + Sci + sum3 ; BT -Cini,i ← BT -sum3 ∪ (i, i, ”local”)
Cioi,i ← Td · Ucdi + Cini,i ; BT -Cioi,i ← BT -Cini,i

Cbni,i ← Cini,i + Tuout
i · Ucui ; BT -Cbni,i ← BT -Cini,i

Cboi,i ← Cioi,i + Tuout
i · Ucui ; BT -Cboi,i ← BT -Cioi,i

/* updateminl∈Vi Cb?i,l */
jminn ← i ; jmini ← i ; jmino ← i
/* calculate costs fori, j wherej ∈ Vk, k ∈ Chi */
foreachk in Chi do

foreachj in Vk do
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sum4 ← Cink,j ; BT -sum4 ← (k, j, ”in”)
sum5 ← Ciok,j ; BT -sum5 ← (k, j, ”io”)
sum6 ← Cbnk,j ; BT -sum6 ← (k, j, ”bn”)
if Cbnk,j <= Cbik,j then

sum7 ← Cbnk,j ; BT -sum7 ← (k, j, ”bn”)
else

sum7 ← Cbik,j ; BT -sum7 ← (k, j, ”bi”)
end if
sum8 ← Cbok,j ; BT -sum8 ← (k, j, ”bo”)
foreachl in Chi \ k do

sum4 ← sum4 + Cxnl,j

if Cxnl,j <= Cxil,j then
sum5 ← sum5 + Cxnl,j

else
sum5 ← sum5 + Cxil,j

end if
if Cxnl,j <= Cbnl,j then

sum6 ← sum6 + Cxnl,j

else
sum6 ← sum6 + Cbnl,j ; BT -sum6 ← BT -sum6 ∪ (l, j, ”bn”)

end if
Cminl ← Cxnl,j ; Cminl,type ← ”none”
if Cxil,j < Cminl then

Cminl ← Cxil,j ; Cminl,type ← ”none”
end if
if Cbnl,j < Cminl then

Cminl ← Cbnl,j ; Cminl,type ← ”bn”
end if
if Cbil,j < Cminl then

Cminl ← Cbil,j ; Cminl,type ← ”bi”
end if
sum7 ← sum7 + Cminl ; BT -sum7 ← BT -sum7 ∪ (l, j, Cminl,type)
sum8 ← sum8 + Cminl ; BT -sum8 ← BT -sum8 ∪ (l, j, Cminl,type)

end do
/* calculate min1 (derived from sum7) */
min1 ←∞ ; BT -min1 ← ∅
foreachl in Chi \ k do

tmp ← Cbol,j + sum7− Cminl

if ( tmp < min1) then
min1 ← tmp ; BT -min1 ← (l, j, ”bo”) ∪

(
BT -sum7 \ (l, j, Cminl,type)

)

end if
end do
if Tdmi > 0 then /* There is multicast demand */

sum4 ←∞ ; BT -sum4 ← ∅ ; sum6 ←∞ ; BT -sum6 ← ∅
end if
Cxni,j ←∞ ; Cxii,j ←∞
/* calculate optimalCini,j cost and BT data */
minval = min{sum4, sum5, sum6, sum8,min1}
mintype = argmin{sum4, sum5, sum6, sum8,min1}
Cini,j ← Tdui ·Ddi,j + Tuin

i · Ucui + minval ; BT -Cini,j ← BT -mintype

...
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Cbii,j ← Td · Ucdi + Tdui ·Ddi,j +
(
Tuin

i + Tuout
i

)
· Ucui + sum7 ; BT -Cbii,j ← BT -sum7

/* updateminl∈Vi
Cb?i,l */

if Cbni,j < Cbni,jminn then
jminn ← j

end if
if Cbii,j < Cbii,jmin then

jmini ← j
end if
if Cboi,j < Cboi,jmino then

jmino ← j
end if

end do
end do
/* calculate costs fori, j wherej /∈ Vi */
foreachj in V \ Vi do

sum1 ← 0 ; sum2 ← 0
/* min2, min3, min4 are derived from sum6, sum8, sum8 */
sum6 ← 0 ; BT -sum6 ← ∅ ; sum8 ← 0 ; BT -sum8 ← ∅
foreachk in Chi do

sum1 ← sum1 + Cxnk,j

if Cxnk,j <= Cxik,j then
sum2 ← sum2 + Cxnk,j

else
sum2 ← sum2 + Cxik,j

end if
Cminnk ← Cxnk,j ; Cmink,type ← ”none”
if Cbnk,j < Cminnk then

Cminnk ← Cbik,j ; Cminnk,type ← ”bn”
end if
sum6 ← sum6 + Cminnk ; BT -sum6 ← BT -sum6 ∪ (k, j, Cminnk,type)
Cminbk ← Cbnk,j ; Cminbk,type ← ”bn”
if Cbik,j < Cminbk then

Cminbk ← Cbik,j ; Cminbk,type ← ”bi”
end if
Cmink ← Cxnk,j ; Cmink,type ← ”none”
if Cxik,j < Cmink then

Cmink ← Cxik,j ; Cmink,type ← ”none”
end if
if Cbnk,j < Cmink then

Cmink ← Cbnk,j ; Cmink,type ← ”bn”
end if
if Cbik,j < Cmink then

Cmink ← Cbik,j ; Cmink,type ← ”bi”
end if
sum8 ← sum8 + Cmink ; BT -sum8 ← BT -sum8 ∪ (k, j, Cmink,type)

end do
/* calculate min2, min3, min4 (derived from sum6,sum8) */
min2 ←∞ ; BT -min2 ← ∅ ; min3 ←∞ ; BT -min3 ← ∅ ; min4 ←∞ ; BT -min4 ← ∅
foreachk in Chi do

tmp ← Cbnk,j + sum6− Cminnk

if ( tmp < min2) then
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min2 ← tmp ; BT -min2 ← (k, j, ”bn”) ∪
(
BT -sum6 \ (k, j, Cminnk,type)

)

end if
tmp ← Cminbk + sum8− Cmink

if ( tmp < min3) then
min3 ← tmp ; BT -min3 ← (k, j, Cminbk,type) ∪

(
BT -sum8 \ (k, j, Cmink,type)

)

end if
tmp ← Cbok,j + sum8− Cmink

if ( tmp < min4) then
min4 ← tmp ; BT -min4 ← (k, j, ”bo”) ∪

(
BT -sum8 \ (k, j, Cmink,type)

)

end if
end do
if Tdmi > 0 then /* There is multicast demand */

sum1 ←∞ ; min2 ←∞ ; BT -min2 ← ∅
end if
Cxni,j ← Tdui ·Ddi,j + Tuout

i · Ucui + sum1
...
Cboi,j ← Td · Ucdi + Tdui ·Ddi,j +

(
Tuin

i + Tuout
i

)
· Ucui + min4 ; BT -Cboi,j ← BT -min4

if Cboi,jmino < Cboi,j then
Cboi,j ← Cboi,jmino ; BT -Cboi,j ← BT -Cboi,jmino

end if
end do

end do
/* find the optimal cost */
jmin ← 1
for j = n, n− 1, n− 2, ..., 2 do

if Cin1,j < Cin1,jmin then
jmin ← j

end if
end do
The optimal cost isCin1,jmin .

Backtrack phase
The backtrack phase for allocation of copies is recursive and can easily be described using a recursive function.
The recursion starts by callingallocate(1, jmin, ”in”).
procallocate(i, j, type) {

if type = ”io” then
foreach(k, l, ktype) in BT -Cioi,j do

call allocate(k, l, ktype)
end do

else iftype = ”in” then
foreach(k, l, ktype) in BT -Cini,j do

call allocate(k, l, ktype)
end do

else iftype = ”bn” then
foreach(k, l, ktype) in BT -Cbni,j do

call allocate(k, l, ktype)
end do

else iftype = ”bo” then
foreach(k, l, ktype) in BT -Cboi,j do

call allocate(k, l, ktype)
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end do
else iftype = ”bi” then

foreach(k, l, ktype) in BT -Cbii,j do
call allocate(k, l, ktype)

end do
else iftype = ”local” then

allocate a copy ati
end if
return

}

APPENDIX III
MORE ONMX-HDT - PROOF AND PSEUDO-CODE

This appendix contains additional details on the HDT algorithm that were not included in section IX.

A. Proof of MX-HDT Optimality

The proof of the MX-HDT optimality is very similar to the proof of the HDT optimality. The difference in the proof
is the justification of selecting either unicast or multicast distribution for each vertex (but not both), which was not
relevant for the HDT algorithm.

The proof is based on induction. Lemma 7 is the induction base.
Lemma 7:For all scenarios, and for all verticesj∈V the algorithm optimally allocates the object inTi,j , wheni is

a leaf ofT
Proof: According to the definition of the new optimization problem, either one of the following possibilities

holds.
1) j=i (no string is connected), the algorithm allocates the object at vertexi. There is a copy located atTi therefore

Cxni,i andCxii,i can’t exist (set to∞). Cbii,i is also impossible, since there is no need for incoming multicast
distribution traffic wheni stores a copy. The valid possible scenarios areini,i, ioi,i, bni,i andboi,i which differ
in the assumptions thati is or isn’t the only vertex which stores a copy and there is or isn’t outgoing multicast
distribution traffic fromTi. Sincei stores a copy, there must be incoming update traffic through edgeei. The
optimal cost is constructed from the storage cost, the incoming update traffic throughei, and the additional
outgoing update and/or multicast distribution traffic throughei when appropriate (Cioi,i, Cbni,i, Cboi,i).

2) j 6=i (j /∈Vi). A string Pj,i is connected toTi. According to the definition of the problem, there’s a copy of
the object located at vertexj and i is served (unicast distribution) from that vertex (ifi is served by unicast
distribution from outsideTi). There is a copy located outsideTi thereforeCini,j andCioi,j can’t exist (set to
∞). The scenariosxni,j andxii,j assume that it costs more to store an object ini (and to keep it updated) than
to be served fromj. The scenarioxni,j implies thati is served by unicast distribution. The optimal cost is the
outgoing update traffic throughei and the incoming unicast (fromj to i) and/or multicast distribution traffic
throughei. The scenariosbni,j , bii,j andboi,j assume that it is cheaper to store a copy ini althoughj has a copy.
Sincei stores a copy, the costs calculated forbni,i, bii,i andboi,i must be used accordingly (achieved by setting
min2,min3 andmin4 to∞ for a leaf vertex).

Lemma 8 constructs the induction step for the recursive proof of optimality.
Lemma 8:Assume that the algorithm optimally allocates the object to servers in every subtree rooted at vertexc

which is a child ofi (Tc, c∈Chi) for all scenarios and for all verticesj∈V , then the algorithm optimally allocates the
object inTi for all the scenarios and for all verticesj∈V .

Proof: According to the definition of the new optimization problem, either one of the following possibilities
holds.

1) j=i (no string is connected), the algorithm allocates the object at vertexi. There is a copy located atTi therefore
Cxni,i andCxii,i can’t exist (set to∞). Cbii,i is also impossible, since there is no need for incoming multicast
distribution traffic wheni stores a copy. The valid possible scenarios areini,i, ioi,i, bni,i andboi,i which differ
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in the assumptions thati is or isn’t the only vertex which stores a copy and there is or isn’t outgoing multicast
distribution traffic fromTi. The vertices in each subtreeTk, k∈Chi may be served by unicast and/or multicast
either from vertexi or from copies located internally in the subtree. (The minimum of the following legal
scenarios for eachk∈Chi: Cxnk,j , Cxik,j , Cbnk,j , Cbik,j ⇒ sum3). Sincei stores a copy, there must be
incoming update traffic through edgeei. The optimal cost is constructed from the storage cost ati, the optimal
costs calculated by the children (sum3), the incoming update traffic throughei, and the additional outgoing
update and/or multicast distribution traffic throughei when appropriate (Cioi,i, Cbni,i, Cboi,i).

2) j∈Vk, k∈Chi (no string is connected), the algorithm allocates a copy of the object at vertexj. There is a copy
located atTi thereforeCxni,j andCxii,j can’t exist (set to∞), and there must be incoming update traffic through
edgeei.
For each of the scenarios where no copy of the object is allocated outsideTi (ini,j andioi,j) or copies are also
located outsideTi (bni,j , bii,j andboi,j), one the following children combinations hold:

a) There are copies allocated only insideTk (at least at vertexj), and there is no outgoing multicast distribution
traffic fromTk (scenarioink,j). In this case the rest of the childrenl∈Chi, l 6=k must fulfil scenarioxnl,j .
Vertexi must be served using unicast distribution from vertexj (sum4).

b) There are copies allocated only insideTk (at least at vertexj), and there is outgoing multicast distribution
traffic fromTk (scenarioiok,j). In this case the rest of the childrenl∈Chi, l 6=k must not allocate a copy in
Tl (scenariosxnl,j or xil,j) (sum5). Vertexi is part of a multicast distribution tree, so it must be served by
multicast distribution.
This combination is valid only for scenariosini,j andioi,j .

c) There are copies allocated both insideTk (at least at vertexj) and outsideTk, but there is no multicast
distribution through edgeek (scenariobnk,j). In this case the rest of the childrenl∈Chi, l 6=k may allocate
a copy inTl but must not be served by incoming multicast distribution throughi (through edgeel) (scenarios
xnl,j or bnl,j). Vertexi must be served using unicast distribution from vertexj (sum6).

d) This combination is only valid for scenariobii,j . In this scenario there is incoming multicast distribution
through edgesei.
There are copies allocated both insideTk (at least at vertexj) and outsideTk, andek. Vertex i is part
of a multicast distribution tree, through edgeei (one of scenariosbnk,j , bik,j). In this case the rest of the
children l∈Chi, l 6=k may allocate a copy inTl, and may be served by incoming multicast distribution
traffic throughi (andel) (sum7).

e) There are copies allocated both insideTk (at least at vertexj) and outsideTk, and there is outgoing multicast
distribution through edgeek (scenariobok,j). In this case the rest of the childrenl∈Chi, l 6=k may allocate
a copy inTl, and may be served by incoming multicast distribution traffic through vertexi (and edgeek)
(sum8). Vertexi is part of a multicast distribution tree, so it must be served by multicast distribution.
This combination is not valid for scenariobii,j , due to lemma 2.

f) There are copies allocated both insideTk (at least at vertexj) and outsideTk (scenariosbnk,j or bik,j),
but there is outgoing multicast distribution through some edgeel, l∈Chi, l 6=k (scenariobol,j). In this case
the rest of the childrenm∈Chi, m 6=k, m 6=l may allocate a copy inTm, and may be served by incoming
multicast distribution traffic throughi (and edgeel) (min1).
This combination is not valid for scenariobii,j , due to lemma 2.

For each such scenario the minimal (optimal) valid children combination is selected, and the optimal cost is con-
structed from that combination cost (min betweensum4, sum5, sum6, sum7, sum8 or min1), the cost of up-
date traffic throughei (incoming only forCini,j , Cioi,j , both incoming and outgoing forCbni,j , Cbii,j , Cboi,j)
and the cost of either unicast distribution fromj to i, or multicast distribution traffic through edgei (outgoing
for Cioi,j , Cboi,j , incoming forCbii,j).

3) j /∈Vi. A stringPj,i is connected toTi. According to the definition of the problem, there’s a copy of the object
located at vertexj andi or any vertexv ∈ Vi may be served (unicast distribution) from that vertex (if they are
served by unicast from outsideTi). There is a copy located outsideTi thereforeCini,j andCioi,j can’t exist (set
to∞), and there must be outgoing update traffic through edgeei.
For the scenarioxni,j , which means that no copy is located inTi and there is no incoming multicast distribution
traffic toTi, only one children combination is possible - all the childrenk∈Chi must fulfil scenarioxnk,j . Vertex
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i must be served using unicast distribution from vertexj (sum1).
For the scenarioxii,j , which means that no copy is located inTi but there is incoming multicast distribution
traffic to Ti (i is part of a multicast distribution tree), all the childrenk∈Chi must fulfil scenarioxnk,j or xik,j

(sum2).
For each of the scenarios where copies are also located insideTi (bni,j , bii,j andboi,j), the unicast distribution
source of vertexi (if i is served or passes unicast distribution traffic), may be an internal vertex (i.e.j may not be
the unicast distribution source ofi when there is unicast distribution traffic throughi). In such a case, the unicast
distribution sourcel,l∈Vi and the corresponding costCb?i,l will be used (expressionminl∈Vi Cb?i,l). In casei
is served fromj by unicast distribution, it must not store an object and one the following children combinations
hold:

a) This combination is only valid for scenariobni,j . In this scenario there is no multicast distribution through
edgeei. There is at least one vertexk, k∈Chi which has at least one copy allocated inTk, and does not
produce outgoing multicast distribution traffic (scenariobnk,j). In this case the rest of the childrenl∈Chi,
l 6=k may allocate a copy inTl, but must not be served by incoming multicast distribution throughi (and
edgeel) (scenariosxnl,j or bnl,j) (min2).

b) This combination is only valid for scenariobii,j . In this scenario there is incoming multicast distribution
through edgeei. There is at least one vertexk, k∈Chi which has at least one copy allocated inTk, and may
or may not be served by incoming multicast distribution throughi (scenariosbnk,j or bik,j). In this case
the rest of the childrenl∈Chi, l 6=k may allocate a copy inTl, and may be served by incoming multicast
distribution traffic throughi (andel) (min3).

c) There is outgoing multicast distribution through some vertexk, k∈Chi (scenariobok,j). In this case the rest
of the childrenl∈Chi, l 6=k may allocate a copy inTl, and may be served by incoming multicast distribution
traffic through vertexi (andk) (min4).
This combination is not valid for scenariobii,j , due to lemma 2.

For each such scenario the minimal (optimal) valid children combination is selected, and the optimal cost is
constructed from that combination cost (min betweensum1, sum2,min2,min3 or min4), the cost of update
traffic throughei (outgoing only forCxni,j , Cxii,j , both incoming and outgoing forCbni,j , Cbii,j , Cboi,j) and
the cost of either unicast distribution fromj to i, or multicast distribution traffic through edgei (outgoing for
Cboi,j , incoming forCxii,j , Cbii,j).

Theorem 2:When the algorithm ends,minj∈V Cinr,j holds the optimal allocation cost and the allocation of copies
is optimal.

Proof: The proof is conducted by the induction where lemma 7 is the base and lemma 8 is the step. For each
j∈V , Cinr,j represents an optimal allocation of the objects wherer is served fromj. The minimalCinr,j is the
optimal cost of the original optimization problem. In addition, the costsCxnr,j , Cxir,j , Cbnr,j , Cbir,j andCbor,j

are illegal since there can’t be copies allocated outsideTr ≡ T andCior,j is illegal there can’t be distribution traffic
throughr outside ofT .

B. Partial Pseudo code of MX-HDT

We assume that the vertices are ordered by breadth first ordering. Vertex1 is the root andn must be a leaf.
We also assume the∞ is the maximal number that exists in the computer.
Variables starting withBT are used for the backtrack process, and store a vertex number or the cost/vertex data.

The algorithm is performed in two phases. The first one is for calculating the optimal cost and the backtrack info
for later.
We only provide part of the first phase due to the large number of scenarios and combinations. The main idea in the
pseudo code provided is to show the combinations of children scenarios and to demonstrate the generation of backtrack
info.

The cost calculation phase of MX-HDT is almost similar to the one of HDT (described in subsection II-B). In the
following pseudo code, we only highlighted some of the differences.
Cost calculation phase
for i = n, n− 1, n− 2, ..., 2, 1 do
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/* calculate costs fori, i */
sum3 ← 0 ; BT -sum3 ← ∅
...
Cxni,i ←∞ ; Cxii,i ←∞ ; Cbii,i ←∞
Cini,i ← Tuin

i · Ucui + Sci + sum3 ; BT -Cini,i ← BT -sum3 ∪ (i, i, ”local”)
...
Cboi,i ← Cioi,i + Tuout

i · Ucui ; BT -Cboi,i ← BT -Cioi,i

/* updateminl∈Vi Cb?i,l */
jminn ← i ; jmini ← i ; jmino ← i
/* calculate costs fori, j wherej ∈ Vk, k ∈ Chi */
foreachk in Chi do

foreachj in Vk do
sum4 ← Tdui ·Ddi,j + Cink,j ; BT -sum4 ← (k, j, ”in”)

sum5 ← Ciok,j ; BT -sum5 ← (k, j, ”io”)
sum6 ← Tdui ·Ddi,j + Cbnk,j ; BT -sum6 ← (k, j, ”bn”)

...
if Tdmi > 0 then /* There is multicast demand */

sum4 ←∞ ; BT -sum4 ← ∅ ; sum6 ←∞ ; BT -sum6 ← ∅
end if
...

Cbii,j ← Td · Ucdi +
(
Tuin

i + Tuout
i

)
· Ucui + sum7 ; BT -Cbii,j ← BT -sum7

/* updateminl∈Vi Cb?i,l */
...

end do
end do
/* calculate costs fori, j wherej /∈ Vi */
foreachj in V \ Vi do

...
/* calculate min2, min3, min4 (derived from sum6,sum8) */
min2 ←∞ ; BT -min2 ← ∅ ; min3 ←∞ ; BT -min3 ← ∅ ; min4 ←∞ ; BT -min4 ← ∅
foreachk in Chi do

tmp ← Tdui ·Ddi,j + Cbnk,j + sum6− Cminnk

if ( tmp < min2) then
min2 ← tmp ; BT -min2 ← (k, j, ”bn”) ∪

(
BT -sum6 \ (k, j, Cminnk,type)

)

end if
...

end do
if Tdmi > 0 then /* There is multicast demand */

sum1 ←∞ ; min2 ←∞ ; BT -min2 ← ∅
end if
Cxni,j ← Tdui ·Ddi,j + Tuout

i · Ucui + sum1
...

Cboi,j ← Td · Ucdi +
(
Tuin

i + Tuout
i

)
· Ucui + min4 ; BT -Cboi,j ← BT -min4

if Cboi,jmino < Cboi,j then
Cboi,j ← Cboi,jmino ; BT -Cboi,j ← BT -Cboi,jmino

end if
end do

end do
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/* find the optimal cost */
jmin ← 1
for j = n, n− 1, n− 2, ..., 2 do

if Cin1,j < Cin1,jmin then
jmin ← j

end if
end do
The optimal cost isCin1,jmin .

Backtrack phase
The backtrack phase of MX-HDT is similar to the backtrack phase of HDT described in appendix II, subsection II-B.
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